Evolution of colour vision in mammals

被引:223
作者
Jacobs, Gerald H. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Neurosci Res Inst, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Psychol, Santa Barbara, CA 93106 USA
关键词
colour vision; opsin genes; photopigments; dichromacy; trichromacy; mammals; CONE VISUAL PIGMENTS; RETINAL GANGLION-CELLS; SPECTRAL SENSITIVITY; NEW-WORLD; MOLECULAR EVOLUTION; TRICHROMATIC VISION; PRIMATE; PHOTOPIGMENTS; SELECTION; FRUIT;
D O I
10.1098/rstb.2009.0039
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision.
引用
收藏
页码:2957 / 2967
页数:11
相关论文
共 95 条
[1]   The mammalian photoreceptor mosaic-adaptive design [J].
Ahnelt, PK ;
Kolb, H .
PROGRESS IN RETINAL AND EYE RESEARCH, 2000, 19 (06) :711-777
[2]   Color vision in the black howler monkey (Alouatta caraya) [J].
Araujo, Antonio C. ;
Didonet, Julia J. ;
Araujo, Carolina S. ;
Saletti, Patricia G. ;
Borges, Tania R. J. ;
Pessoa, Valdir F. .
VISUAL NEUROSCIENCE, 2008, 25 (03) :243-248
[3]   Behavioural evidence for marsupial trichromacy [J].
Arrese, CA ;
Beazley, LD ;
Neumeyer, C .
CURRENT BIOLOGY, 2006, 16 (06) :R193-R194
[4]   Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus) [J].
Arrese, CA ;
Oddy, AY ;
Runham, PB ;
Hart, NS ;
Shand, J ;
Hunt, DM ;
Beazley, LD .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 272 (1565) :791-796
[5]   Trichromacy in Australian marsupials [J].
Arrese, CA ;
Hart, NS ;
Thomas, N ;
Beazley, LD ;
Shand, J .
CURRENT BIOLOGY, 2002, 12 (08) :657-660
[6]   MOLECULAR DETERMINANTS OF HUMAN RED/GREEN COLOR DISCRIMINATION [J].
ASENJO, AB ;
RIM, J ;
OPRIAN, DD .
NEURON, 1994, 12 (05) :1131-1138
[7]   The delayed rise of present-day mammals [J].
Bininda-Emonds, Olaf R. P. ;
Cardillo, Marcel ;
Jones, Kate E. ;
MacPhee, Ross D. E. ;
Beck, Robin M. D. ;
Grenyer, Richard ;
Price, Samantha A. ;
Vos, Rutger A. ;
Gittleman, John L. ;
Purvis, Andy .
NATURE, 2007, 446 (7135) :507-512
[8]   Origins and antiquity of X-linked triallelic color vision systems in New World monkeys [J].
Boissinot, S ;
Tan, Y ;
Shyue, SK ;
Schneider, H ;
Sampaio, I ;
Neiswanger, K ;
Hewett-Emmett, D ;
Li, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13749-13754
[9]   Evolution of vertebrate visual pigments [J].
Bowmaker, James K. .
VISION RESEARCH, 2008, 48 (20) :2022-2041
[10]  
Buck S.L., 2004, VISUAL NEUROSCIENCES, P863