Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement

被引:146
作者
Boles, JR [1 ]
Eichhubl, P
Garven, G
Chen, J
机构
[1] Univ Calif Santa Barbara, Dept Geol Sci, Santa Barbara, CA 93106 USA
[2] Stanford Univ, Dept Geog & Environm Sci, Stanford, CA 94305 USA
[3] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA
[4] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
关键词
D O I
10.1306/02090403040
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Extensive Barbara basin fluids and hydrocarbons into the Refugio-Carneros fault, a north-bounding structure to the basin. Calcite cements are only found at the end segments of the 24-km (15-mi)-long fault zone, which has less than 150 m (490 ft) of maximum normal offset. The calcite is contemporaneous with fault movement, as evidenced by pervasive crystal twinning and brecciation, as well as textures indicating repeated episodes of rapid fluid flow and calcite cementation. Based on U-Th dates of the calcite, fluid flow along the fault occurred between 110 and greater than 500 ka, indicating that fluid migration was intermittently active during the recent uplift history of the basin flank. Stable carbon isotopic values of the calcite are delta(13)C(PDB) = -35 to -41parts per thousand, which means that the carbon source is predominantly thermogenic methane. The composition of fluid inclusions in calcite is consistent with mixing of meteoric and saline water in the presence of liquid and gaseous hydrocarbons. Fluid-inclusion homogenization temperatures of about 80-95degreesC suggest that hot water leaked from 2-to 3-km (1.2-to 1.9-mi) depths in the basin and moved up faults on the basin flank at rates rapid enough to transport substantial heat to shallow depths. Finite-element models show that, in this case, this process requires faulting of an overpressured basin and that a single flow event would have lasted for at least 10(3) yr. Subsurface fluid pressures at comparable depths in the offshore section today are close to hydrostatic, and therefore, only slow hydrocarbon seepage occurs. When combined with the U-Th age data, this suggests that over a 10(5)-yr timescale, basin fluid flow has evolved from the rapid expulsion of hot water and gas being carried up along active, bounding faults derived from overpressured strata to present hydrostatic conditions of slow, buoyancy-driven seepage of hydrocarbons.
引用
收藏
页码:947 / 970
页数:24
相关论文
共 69 条
[1]  
[Anonymous], ADV POROUS MEDIA
[2]  
[Anonymous], 1998, INT ASS SEDIMENTOLOG
[3]  
ANTONELLINI M, 1994, AAPG BULL, V78, P355
[4]   Reactive flow models of ore formation in the Southeast Missouri district [J].
Appold, MS ;
Garven, G .
ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLOGISTS, 2000, 95 (08) :1605-1626
[5]   The hydrology of ore formation in the Southeast Missouri district: Numerical models of topography-driven fluid flow during the Ouachita Orogeny [J].
Appold, MS ;
Garven, G .
ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLOGISTS, 1999, 94 (06) :913-935
[6]  
Atwater T., 1970, GEOL SOC AM BULL, V181, P3513, DOI [DOI 10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO
[7]  
2, 10.1130/0016-7606, DOI 10.1130/0016-7606]
[8]   Fractures, faults, and hydrocarbon entrapment, migration and flow [J].
Aydin, A .
MARINE AND PETROLEUM GEOLOGY, 2000, 17 (07) :797-814
[9]  
Bathurst R. G. C., 1975, CARBONATE SEDIMENTS