Effective slip and friction reduction in nanograted superhydrophobic microchannels

被引:409
作者
Choi, Chang-Hwan [1 ]
Ulmanella, Umberto [1 ]
Kim, Joonwon [1 ]
Ho, Chih-Ming [1 ]
Kim, Chang-Jin [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2337669
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Enabled by a technology to fabricate well-defined nanogrates over a large area (2x2 cm(2)), we report the effect of such a surface, in both hydrophilic and hydrophobic conditions, on liquid slip and the corresponding friction reduction in microchannels. The grates are designed to be dense (similar to 230 nm pitch) but deep (similar to 500 nm) in order to sustain a large amount of air in the troughs when the grates are hydrophobic, even under pressurized liquid flow conditions (e.g., more than 1 bar). A noticeable slip (i.e., slip length of 100-200 nm, corresponding to 20%-30% reduction of pressure drop in a similar to 3 mu m high channel) is observed for water flowing parallel over the hydrophobic nanogrates; this is believed to be an "effective" slip generated by the nanostrips of air in the grate troughs under the liquid. The effective slip is clearer and larger in flows parallel to the nanograting patterns than in transverse, suggesting that the nanograted superhydrophobic surfaces would not only reduce friction in liquid flows under pressure but also enable directional control of the slip. This paper is the first to use nanoscale grating patterns and to measure their effect on liquid flows in microchannels. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Large slip effect at a nonwetting fluid-solid interface [J].
Barrat, JL ;
Bocquet, L .
PHYSICAL REVIEW LETTERS, 1999, 82 (23) :4671-4674
[2]   Experimental evidence for a large slip effect at a nonwetting fluid-solid interface [J].
Baudry, J ;
Charlaix, E ;
Tonck, A ;
Mazuyer, D .
LANGMUIR, 2001, 17 (17) :5232-5236
[3]   SLIP BETWEEN A LIQUID AND A SOLID - TOLSTOI,D.M. (1952) THEORY RECONSIDERED [J].
BLAKE, TD .
COLLOIDS AND SURFACES, 1990, 47 :135-145
[4]   Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects [J].
Bonaccurso, E ;
Kappl, M ;
Butt, HJ .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :4-761034
[5]   Surface roughness and hydrodynamic boundary slip of a newtonian fluid in a completely wetting system [J].
Bonaccurso, E ;
Butt, HJ ;
Craig, VSJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (14) :4
[6]   Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces [J].
Cho, JHJ ;
Law, BM ;
Rieutord, F .
PHYSICAL REVIEW LETTERS, 2004, 92 (16) :166102-1
[7]   Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface - art. no. 066001 [J].
Choi, CH ;
Kim, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[8]   Apparent slip flows in hydrophilic and hydrophobic microchannels [J].
Choi, CH ;
Westin, KJA ;
Breuer, KS .
PHYSICS OF FLUIDS, 2003, 15 (10) :2897-2902
[9]  
CHOI CH, 2005, P 13 INT C SOL STAT, P168
[10]   SLIPPAGE OF LIQUIDS OVER LYOPHOBIC SOLID-SURFACES [J].
CHURAEV, NV ;
SOBOLEV, VD ;
SOMOV, AN .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1984, 97 (02) :574-581