Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference

被引:138
作者
Sumimoto, H
Miyagishi, M
Miyoshi, H
Yamagata, S
Shimizu, A
Taira, K
Kawakami, Y
机构
[1] Keio Univ, Sch Med, Inst Adv Med Res, Div Cellular Signaling,Shinjuku Ku, Tokyo 1608582, Japan
[2] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Tokyo 1138656, Japan
[3] RIKEN, Tsukuba Inst, BioResource Ctr, Subteam Manipulat Cell Fate, Tsukuba, Ibaraki 3050074, Japan
关键词
gene therapy; melanoma; lentiviral vector; BRAF; RNAi; MAPK;
D O I
10.1038/sj.onc.1207812
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oncogenic mutations of molecules involved in the mitogen-activated protein kinase (MAPK) pathways provide signals mediating both tumor growth and invasion in various cancers including melanomas. BRAF somatic mutations, found in 66% of melanomas, have NIH3T3 transforming ability with the elevated kinase activity in vitro. We attempted to mediate RNA interference (RNAi) with HIV lentiviral vectors specific for either wild type or the most frequently mutated form of BRAF (V599E) in 10 melanoma cell lines, and found that RNAi inhibited the growth of most melanoma cell lines in vitro as well as in vivo, which was accompanied by decrease of both BRAF protein and ERK phosphorylation. Interestingly, the mutated BRAF (V599E)-specific siRNA inhibited the growth and MAPK activity of only melanoma cell lines with this mutation. Furthermore, BRAF RNAi inhibited matrigel invasion of melanoma cells accompanied with a decrease of matrix metalloproteinase activity and beta(1) integrin expression. These results clarify that the mutated BRAF (V599E) is essentially involved in malignant phenotype of melanoma cells through the MAPK activation and is an attractive molecular target for melanoma treatment. The lentivirus-mediated RNAi specific for oncogenic mutations may be a powerful technique for gene therapy of cancer.
引用
收藏
页码:6031 / 6039
页数:9
相关论文
共 40 条
[1]   Lentiviral-mediated RNA interference [J].
Abbas-Terki, T ;
Blanco-Bose, W ;
Déglon, N ;
Pralong, W ;
Aebischer, P .
HUMAN GENE THERAPY, 2002, 13 (18) :2197-2201
[2]   Retroviral delivery of small interfering RNA into primary cells [J].
Barton, GM ;
Medzhitov, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14943-14945
[3]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[4]   Stable suppression of tumorigenicity by virus-mediated RNA interference [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
CANCER CELL, 2002, 2 (03) :243-247
[5]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[6]   MAP kinase pathways [J].
Cobb, MH .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1999, 71 (3-4) :479-500
[7]   Mutations of the BRAF gene in human cancer [J].
Davies, H ;
Bignell, GR ;
Cox, C ;
Stephens, P ;
Edkins, S ;
Clegg, S ;
Teague, J ;
Woffendin, H ;
Garnett, MJ ;
Bottomley, W ;
Davis, N ;
Dicks, N ;
Ewing, R ;
Floyd, Y ;
Gray, K ;
Hall, S ;
Hawes, R ;
Hughes, J ;
Kosmidou, V ;
Menzies, A ;
Mould, C ;
Parker, A ;
Stevens, C ;
Watt, S ;
Hooper, S ;
Wilson, R ;
Jayatilake, H ;
Gusterson, BA ;
Cooper, C ;
Shipley, J ;
Hargrave, D ;
Pritchard-Jones, K ;
Maitland, N ;
Chenevix-Trench, G ;
Riggins, GJ ;
Bigner, DD ;
Palmieri, G ;
Cossu, A ;
Flanagan, A ;
Nicholson, A ;
Ho, JWC ;
Leung, SY ;
Yuen, ST ;
Weber, BL ;
Siegler, HF ;
Darrow, TL ;
Paterson, H ;
Marais, R ;
Marshall, CJ ;
Wooster, R .
NATURE, 2002, 417 (6892) :949-954
[8]   Retrovirus-delivered siRNA [J].
Devroe E. ;
Silver P.A. .
BMC Biotechnology, 2 (1)
[9]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[10]  
Genersch E, 2000, J CELL SCI, V113, P4319