Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition

被引:234
作者
Iglesias, VA [1 ]
Meins, F [1 ]
机构
[1] Friedrich Miescher Inst, CH-4002 Basel, Switzerland
关键词
D O I
10.1046/j.1365-313x.2000.00658.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Susceptibility to virus infection is decreased in a class I beta-1,3-glucanase (GLU I)-deficient mutant (TAG4.4) of tobacco generated by antisense transformation. TAG4.4 exhibited delayed intercellular trafficking via plasmodesmata of a tobamovirus (tobacco mosaic virus), of a potexvirus (recombinant potato virus X expressing GFP), and of the movement protein (MP) 3a of a cucumovirus (cucumber mosaic virus). Monitoring the cell-to-cell movement of dextrans and peptides by a novel biolistic method revealed that the plasmodesmatal size exclusion limit (SEL) of TAG4.4 was also reduced from 1.0 to 0.85 nm. Therefore, GLU I-deficiency has a broad effect on plasmodesmatal movement, which is not limited to a particular virus type. Deposition of callose, a substrate for beta-1,3-glucanases, was increased in TAG4.4 in response to 32 degrees C treatment, treatment with the fungal elicitor xylanase, and wounding, suggesting that GLU I has an important function in regulating callose metabolism. Callose turnover is thought to regulate plasmodesmatal SEL. We propose that GLU I induction in response to infection may help promote MP-driven virus spread by degrading callose.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 46 条
[1]   PAPILLAE AND RELATED WOUND PLUGS OF PLANT-CELLS [J].
AIST, JR .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1976, 14 :145-163
[2]   ULTRASTRUCTURE OF LOCAL LESIONS INDUCED BY POTATO VIRUS X - SEQUENCE OF CYTOLOGICAL EVENTS IN COURSE OF INFECTION [J].
ALLISON, AV ;
SHALLA, TA .
PHYTOPATHOLOGY, 1974, 64 (06) :784-793
[3]  
[Anonymous], 1997, Plant relationships, DOI [10.1007/978-3-662-10370-8_7, DOI 10.1007/978-3-662-10370-8_7]
[4]   AN ETHYLENE BIOSYNTHESIS-INDUCING ENDOXYLANASE ELICITS ELECTROLYTE LEAKAGE AND NECROSIS IN NICOTIANA-TABACUM CV XANTHI LEAVES [J].
BAILEY, BA ;
DEAN, JFD ;
ANDERSON, JD .
PLANT PHYSIOLOGY, 1990, 94 (04) :1849-1854
[5]   JELLYFISH GREEN FLUORESCENT PROTEIN AS A REPORTER FOR VIRUS-INFECTIONS [J].
BAULCOMBE, DC ;
CHAPMAN, S ;
CRUZ, SS .
PLANT JOURNAL, 1995, 7 (06) :1045-1053
[6]   Pathogenesis-related functions of plant beta-1,3-glucanases investigated by antisense transformation - A review [J].
Beffa, R ;
Meins, F .
GENE, 1996, 179 (01) :97-103
[7]   PHYSIOLOGICAL COMPENSATION IN ANTISENSE TRANSFORMANTS - SPECIFIC INDUCTION OF AN ERSATZ GLUCAN ENDO-1,3-BETA-GLUCOSIDASE IN PLANTS INFECTED WITH NECROTIZING VIRUSES [J].
BEFFA, RS ;
NEUHAUS, JM ;
MEINS, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :8792-8796
[8]   Decreased susceptibility to viral disease of beta-1,3-glucanase-deficient plants generated by antisense transformation [J].
Beffa, RS ;
Hofer, RM ;
Thomas, M ;
Meins, F .
PLANT CELL, 1996, 8 (06) :1001-1011
[9]  
Carrington JC, 1996, PLANT CELL, V8, P1669, DOI 10.1105/tpc.8.10.1669
[10]   Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector [J].
Casper, SJ ;
Holt, CA .
GENE, 1996, 173 (01) :69-73