Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile

被引:190
作者
Qi, Zhi [1 ]
Stephens, Nicholas R. [1 ]
Spalding, Edgar P. [1 ]
机构
[1] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA
关键词
D O I
10.1104/pp.106.088989
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The amino acids glutamate (Glu) and glycine (Gly) trigger large, rapid rises in cytosolic Ca2+ concentration and a concomitant rise in membrane potential (depolarization) in plants. The possibility that plant homologs of neuronal ionotropic glutamate receptors mediate these neuron-like ionic responses was tested in Arabidopsis (Arabidopsis thaliana) seedlings using a combination of Ca2+ measurements, electrophysiology, and reverse genetics. The membrane depolarization triggered by Glu was greatly reduced or completely blocked in some conditions by mutations in GLR3.3, one of the 20 GLR genes in Arabidopsis. The same mutations completely blocked the associated rise in cytosolic Ca2+. These results genetically demonstrate the participation of a glutamate receptor in the rapid ionic responses to an amino acid. The GLR3.3-independent component of the depolarization required Glu concentrations above 25 mu M, did not display desensitization, and was strongly suppressed by increasing extracellular pH. It is suggested to result from H+-amino acid symport. Six amino acids commonly present in soils (Glu, Gly, alanine, serine, asparagine, and cysteine) as well as the tripeptide glutathione (gamma-glutamyl-cysteinyl-Gly) were found to be strong agonists of the GLR3.3-mediated responses. All other amino acids induced a small depolarization similar to the non-GLR, putative symporter component and in most cases evoked little or no Ca2+ rise. From these results it may be concluded that sensing of six amino acids in the rhizosphere and perhaps extracellular peptides is coupled to Ca2+ signaling through a GLR-dependent mechanism homologous to a fundamental component of neuronal signaling.
引用
收藏
页码:963 / 971
页数:9
相关论文
共 50 条
[1]   THE BIOLOGY OF MYCORRHIZA IN THE ERICACEAE .12. QUANTITATIVE-ANALYSIS OF INDIVIDUAL FREE AMINO-ACIDS IN RELATION TO TIME AND DEPTH IN THE SOIL-PROFILE [J].
ABUARGHUB, SM ;
READ, DJ .
NEW PHYTOLOGIST, 1988, 108 (04) :433-441
[2]   Amino acid recognition by venus flytrap domains is encoded in an 8-residue motif [J].
Acher, FC ;
Bertrand, HO .
BIOPOLYMERS, 2005, 80 (2-3) :357-366
[3]   Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells [J].
Allen, GJ ;
Kwak, JM ;
Chu, SP ;
Llopis, J ;
Tsien, RY ;
Harper, JF ;
Schroeder, JI .
PLANT JOURNAL, 1999, 19 (06) :735-747
[4]   Kinetics and specificity of a H+ amino acid transporter from Arabidopsis thaliana [J].
Boorer, KJ ;
Frommer, WB ;
Bush, DR ;
Kreman, M ;
Loo, DDF ;
Wright, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (04) :2213-2220
[5]   Molecular evolution of glutamate receptors: A primitive signaling mechanism that existed before plants and animals diverged [J].
Chiu, J ;
DeSalle, R ;
Lam, HM ;
Meisel, L ;
Coruzzi, G .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (06) :826-838
[6]   THE INTERACTIONS BETWEEN PLASMA-MEMBRANE DEPOLARIZATION AND GLUTAMATE RECEPTOR ACTIVATION IN THE REGULATION OF CYTOPLASMIC FREE CALCIUM IN CULTURED CEREBELLAR GRANULE CELLS [J].
COURTNEY, MJ ;
LAMBERT, JJ ;
NICHOLLS, DG .
JOURNAL OF NEUROSCIENCE, 1990, 10 (12) :3873-3879
[7]   Glutamate receptors in plants [J].
Davenport, R .
ANNALS OF BOTANY, 2002, 90 (05) :549-557
[8]   Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells [J].
Demidchik, V ;
Essah, PA ;
Tester, M .
PLANTA, 2004, 219 (01) :167-175
[9]   Glutamate-gated calcium fluxes in Arabidopsis [J].
Dennison, KL ;
Spalding, EP .
PLANT PHYSIOLOGY, 2000, 124 (04) :1511-1514
[10]  
Dingledine R, 1999, PHARMACOL REV, V51, P7