Symplectic tangent map for planetary motions

被引:54
作者
Mikkola, S [1 ]
Innanen, K
机构
[1] Turku Univ Observ, Piikkio 21500, Finland
[2] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada
[3] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada
基金
加拿大自然科学与工程研究理事会; 芬兰科学院;
关键词
planetary systems; Liapunov exponents; chaos; symplectic integration;
D O I
10.1023/A:1008312912468
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Equations are presented for the computation of tangent maps for use in nearly Keplerian motion, approximated by use of a symplectic leapfrog map. The resulting algorithms constitute more accurate and efficient methods to obtain the Liapunov exponents and the state transition matrix, and can be used to study chaos in planetary motions, as well as in orbit determination procedures from observations. Applications include planetary systems, satellite motions and hierarchical, nearly Keplerian systems in general.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 8 条
[1]  
[Anonymous], 1991, CELEST MECH DYN ASTR
[3]   SOLAR-SYSTEM CHAOS AND THE DISTRIBUTION OF ASTEROID ORBITS [J].
MIKKOLA, S ;
INNANEN, K .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 277 (02) :497-501
[4]  
MIKKOLA S, 1999, UNPUB SYMPLECTIC ORB
[5]  
Stiefel E.L., 1971, Linear and Regular Celestial Mechanics, DOI DOI 10.1007/978-3-642-65027-7
[6]  
STUMPFF K, 1962, HIMMELSMECHANIK, V1
[7]  
WISDOM J, 1997, P INT METH CLASS MEC, P217
[8]  
WISDOM J, 1991, ASTRON J, V102, P1520