Non-Abelian Berry connections for quantum computation

被引:256
作者
Pachos, J
Zanardi, P
Rasetti, M
机构
[1] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[2] Politecn Torino, Ist Nazl Fis Mat, Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevA.61.010305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the holonomic approach to quantum computation, information is encoded in a degenerate eigenspace of a parametric family of Hamiltonians acid manipulated by the associated holonomic gates. These are realized in terms of the non-Abelian Berry connection and are obtained by driving the control parameters along adiabatic loops. We show how it is possible for a specific model to explicitly determine the loops generating any desired logical gate, thus producing a universal set of unitary transformations. In a multipartite system unitary transformations can be implemented efficiently by sequences of local holonomic gates. Moreover, a conceptual scheme for obtaining the required Hamiltonian family, based on frequently repeated pulses, is discussed, together with a possible process whereby the initial state can be prepared and the final one can be measured.
引用
收藏
页数:4
相关论文
共 14 条
[1]   UNIVERSALITY IN QUANTUM COMPUTATION [J].
DEUTSCH, D ;
BARENCO, A ;
EKERT, A .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :669-677
[2]   2-BIT GATES ARE UNIVERSAL FOR QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
PHYSICAL REVIEW A, 1995, 51 (02) :1015-1022
[3]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[4]  
JACKIW R, 1984, RELATIVITY GROUPS TO, P154
[5]  
KITAEV A, QUANTPH9707021
[6]  
Nakahara M., 1990, Graduate Stu dent Series in Physics
[7]  
PRESKILL J, 1999, INTRO QUANTUM COMPUT
[8]  
Shapere A., 1989, GEOMETRIC PHASES PHY
[9]   Quantum computing [J].
Steane, A .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (02) :117-173
[10]   Dynamical decoupling of open quantum systems [J].
Viola, L ;
Knill, E ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2417-2421