Plastic identification by remote sensing spectroscopic NIR imaging using kernel partial least squares (KPLS)

被引:43
作者
vandenBroek, WHAM [1 ]
Derks, EPPA [1 ]
vandeVen, EW [1 ]
Wienke, D [1 ]
Geladi, P [1 ]
Buydens, LMC [1 ]
机构
[1] UMEA UNIV,DEPT ORGAN CHEM,CHEMOMETR RES GRP,S-90187 UMEA,SWEDEN
关键词
kernel PLS; NIR imaging; multivariate image analysis;
D O I
10.1016/S0169-7439(96)00056-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work describes the application of partial least squares (PLS) modeling in data reduction purposes for the classification of spectroscopic near infrared (NIR) images. Given multi-dimensional images (i.e. p images taken at p different wavelengths regions in the NIR-range), PLS projects the (nearly void) high dimensional space into a low dimensional latent space using the coded class information of the sample objects. Hence, PLS can be considered as a supervised latent variable analysis. In addition, data reduction by PLS increases the speed of on-line classification which is attractive in, e.g., process control. In order to apply these conditions on imaging problems a rapid PLS version, kernel PLS, is investigated. Emphasis is put on the performance of PLS as a supervised data decomposition technique for the classification of collinear image data, applied on a real world application. This application entails the discrimination between the materials plastics, non-plastics and image backgrounds.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 24 条
[1]  
ALAM MK, 1994, SPECTROSCOPY, V9, P30
[2]  
[Anonymous], 1988, Journal of Chemometrics
[3]   COMMENTS ON THE PLS KERNEL ALGORITHM [J].
DEJONG, S ;
TERBRAAK, CJF .
JOURNAL OF CHEMOMETRICS, 1994, 8 (02) :169-174
[4]  
Dillon W.R., 1984, MULTIVARIATE ANAL ME
[5]  
EISENRECIH N, 1992, 23 INT ANN C ICT 199
[6]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[7]   PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL [J].
GELADI, P ;
KOWALSKI, BR .
ANALYTICA CHIMICA ACTA, 1986, 185 :1-17
[8]  
HELLAND IS, 1990, SCAND J STAT, V17, P97
[9]  
HOLZHEY G, 1993, PAPIER, V47, P337
[10]   NIR - REMOTE-SENSING AND ARTIFICIAL NEURAL NETWORKS FOR RAPID IDENTIFICATION OF POST CONSUMER PLASTICS [J].
HUTHFEHRE, T ;
FELDHOFF, R ;
KANTIMM, T ;
QUICK, L ;
WINTER, F ;
CAMMANN, K ;
VANDENBROEK, W ;
WIENKE, D ;
MELSSEN, W ;
BUYDENS, L .
JOURNAL OF MOLECULAR STRUCTURE, 1995, 348 :143-146