Grover's quantum searching algorithm is optimal

被引:341
作者
Zalka, C [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 04期
关键词
D O I
10.1103/PhysRevA.60.2746
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
I show that for any number of oracle lookups up to about pi/4 root N Grover's quantum searching algorithm gives the maximal possible probability of finding the desired element. I explain why this is also true for quantum algorithms which use measurements during the computation. I also show that unfortunately quantum searching cannot be parallelized better than by assigning different parts of the search space to independent quantum computers. [S1050-2947(99)09209-4].
引用
收藏
页码:2746 / 2751
页数:6
相关论文
共 12 条
[1]  
BENNETT C, QUANTPH9701001
[2]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[3]  
Boyer M, 1998, FORTSCHR PHYS, V46, P493, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO
[4]  
2-P
[5]  
BOYER M, QUANTPH9605034
[6]  
Boyer M, 1996, P 4 WORKSH PHYS COMP, P36
[7]  
FUCHS CA, QUANTPH9601020
[8]  
FUCHS CA, THESIS U NEW MEXICO
[9]  
GROVER L, UNPUB
[10]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328