NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure

被引:299
作者
Murdoch, Colin E. [1 ]
Zhang, Min [1 ]
Cave, Alison C. [1 ]
Shah, Ajay M. [1 ]
机构
[1] Kings Coll London, Sch Med, Dept Cardiol, Div Cardiovasc, London SE5 9PJ, England
关键词
NADPH oxidase; heart; hypertrophy; heart failure; oxidative stress; reactive oxygen species; redox signalling;
D O I
10.1016/j.cardiores.2006.03.016
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Markers of increased oxidative stress are known to be elevated following acute myocardial infarction and in the context of chronic left ventricular hypertrophy or heart failure, and their levels may correlate with the degree of contractile dysfunction or cardiac deficit. An obvious pathological mechanism that may account for this correlation is the potential deleterious effects of increased oxidative stress through the induction of cellular dysfunction, energetic deficit or cell death. However, reactive oxygen species have several much more subtle effects in the remodelling or failing heart that involve specific redox-regulated modulation of signalling pathways and gene expression. Such redoxsensitive regulation appears to play important roles in the development of several components of the phenotype of the failing heart, for example cardiomyocyte hypertrophy, interstitial fibrosis and chamber remodelling. In this article, we review the evidence supporting the involvement of reactive oxygen species and redox signalling pathways in the development of cardiac hypertrophy and heart failure, with a particular focus on the NADPH oxidase family of superoxide-generating enzymes which appear to be especially important in redox signalling. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 215
页数:8
相关论文
共 102 条
[1]   S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells [J].
Adachi, T ;
Pimentel, DR ;
Heibeck, T ;
Hou, XY ;
Lee, YJ ;
Jiang, BB ;
Ido, Y ;
Cohen, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (28) :29857-29862
[2]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[3]   Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase [J].
Ambasta, RK ;
Kumar, P ;
Griendling, KK ;
Schmidt, HHHW ;
Busse, R ;
Brandes, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45935-45941
[4]   Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning [J].
Bell, RM ;
Cave, AC ;
Johar, S ;
Hearse, DJ ;
Shah, AM ;
Shattock, MJ .
FASEB JOURNAL, 2005, 19 (12) :2037-+
[5]   Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice [J].
Bendall, JK ;
Cave, AC ;
Heymes, C ;
Gall, N ;
Shah, AM .
CIRCULATION, 2002, 105 (03) :293-296
[6]   Xanthine oxicloreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications [J].
Berry, CE ;
Hare, JM .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 555 (03) :589-606
[7]   Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II - Induced cardiac hypertrophy [J].
Byrne, JA ;
Grieve, DJ ;
Bendall, JK ;
Li, JM ;
Gove, C ;
Lambeth, JD ;
Cave, AC ;
Shah, AM .
CIRCULATION RESEARCH, 2003, 93 (09) :802-804
[8]   Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts [J].
Calderone, A ;
Thaik, CM ;
Takahashi, N ;
Chang, DLF ;
Colucci, WS .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (04) :812-818
[9]   Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy [J].
Cappola, TP ;
Kass, DA ;
Nelson, GS ;
Berger, RD ;
Rosas, GO ;
Kobeissi, ZA ;
Marbán, E ;
Hare, JM .
CIRCULATION, 2001, 104 (20) :2407-2411
[10]   Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts [J].
Cheng, TH ;
Cheng, PY ;
Shih, NL ;
Chen, IB ;
Wang, DL ;
Chen, JJ .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2003, 42 (10) :1845-1854