Behaviour of NMDA and AMPA receptor-mediated miniature EPSCs at rat cortical neuron synapses identified by calcium imaging

被引:51
作者
Umemiya, M
Senda, M
Murphy, TH
机构
[1] Tohoku Univ, Sch Med, Dept Neurophysiol, Aoba Ku, Sendai, Miyagi 9808575, Japan
[2] Univ British Columbia, Fac Med, Dept Psychiat, Kinsmen Lab, Vancouver, BC, Canada
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1999年 / 521卷 / 01期
关键词
D O I
10.1111/j.1469-7793.1999.00113.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Simultaneous recording of intracellular calcium concentration at a synapse and synaptic currents from the cell body allows mapping of miniature excitatory postsynaptic currents (mEPSCs) to single synapses. 2. In the absence of extracellular Mg2+, 77% of synapses had mEPSCs with fast and slow components, attributed to AMPA- and NMDA-type glutamate receptors, respectively. The remainder of synapses (23 %) had mEPSCs that lacked a fast component; these responses were attributed to NMDA receptors. 3. A strong positive correlation between the amplitude of the calcium transient and the NMDA receptor-mediated mEPSC was observed, indicating that the mEPSCs originate from an identified synapse. 4. At synapses that had both mEPSC components, the AMPA receptor component was positively correlated with charge influx mediated by NMDA receptors during repeated synaptic events. No periodic failure in the AMPA receptor mEPSC was observed at synapses expressing both receptor components. 5. A significant positive correlation between the mean amplitudes of NMDA and AMPA receptor components of mEPSCs is observed across different synapses. 6. We suggest that factors effecting both receptor classes, such as the amount of transmitter in synaptic vesicles, might contribute to the variation in mEPSC amplitude during repeated miniature events at a single synapse. Although the average postsynaptic response at different synapses can vary in amplitude, there appears to be a mechanism to keep the ratio of each receptor subtype within a narrow range.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 48 条
[1]   Extrasynaptic glutamate spillover in the hippocampus: Dependence on temperature and the role of active glutamate uptake [J].
Asztely, F ;
Erdemli, G ;
Kullmann, DM .
NEURON, 1997, 18 (02) :281-293
[2]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[3]   Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs [J].
Bekkers, JM ;
Stevens, CF .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 75 (03) :1250-1255
[4]   ORIGIN OF VARIABILITY IN QUANTAL SIZE IN CULTURED HIPPOCAMPAL-NEURONS AND HIPPOCAMPAL SLICES [J].
BEKKERS, JM ;
RICHERSON, GB ;
STEVENS, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5359-5362
[5]   NMDA AND NON-NMDA RECEPTORS ARE CO-LOCALIZED AT INDIVIDUAL EXCITATORY SYNAPSES IN CULTURED RAT HIPPOCAMPUS [J].
BEKKERS, JM ;
STEVENS, CF .
NATURE, 1989, 341 (6239) :230-233
[6]   ACTIVATION KINETICS REVEAL THE NUMBER OF GLUTAMATE AND GLYCINE BINDING-SITES ON THE N-METHYL-D-ASPARTATE RECEPTOR [J].
CLEMENTS, JD ;
WESTBROOK, GL .
NEURON, 1991, 7 (04) :605-613
[7]   GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors [J].
Dong, HL ;
OBrien, RJ ;
Fung, ET ;
Lanahan, AA ;
Worley, PF ;
Huganir, RL .
NATURE, 1997, 386 (6622) :279-284
[8]   Long-term potentiation and functional synapse induction in developing hippocampus [J].
Durand, GM ;
Kovalchuk, Y ;
Konnerth, A .
NATURE, 1996, 381 (6577) :71-75
[9]   Synaptic targeting of glutamate receptors [J].
Ehlers, MD ;
Mammen, AL ;
Lau, LF ;
Huganir, RL .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (04) :484-489
[10]   INTRINSIC QUANTAL VARIABILITY DUE TO STOCHASTIC PROPERTIES OF RECEPTOR-TRANSMITTER INTERACTIONS [J].
FABER, DS ;
YOUNG, WS ;
LEGENDRE, P ;
KORN, H .
SCIENCE, 1992, 258 (5087) :1494-1498