Chemical modification of polyaniline powders by surface graft copolymerization

被引:32
作者
Chen, YJ
Kang, ET
Neoh, KG
Tan, KL
机构
[1] Natl Univ Singapore, Dept Chem Engn, Singapore 119260, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 119260, Singapore
关键词
polyaniline; graft copolymerization; powders;
D O I
10.1016/S0032-3861(99)00493-0
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Chemical modification of emeraldine (EM) based powders via thermally induced surface graft copolymerization with acrylic acid (AAc), 4-styrenesulfonic acid (SSAc) and amphoteric N,N'-dimethyl(methacryloylethyl)ammonium propanesulfonate (DMAPS) was carried out in aqueous media. The effects of temperature on graft copolymerization and Mohr's salt on homopolymerization were also studied. The chemical composition and structure of the graft-copolymerized powders were studied by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. In all cases, the graft yield increased with the monomer concentration and the temperature used for graft copolymerization. Certain Mohr's salts effectively inhibited the production of the homopolymers. Graft copolymerization with AAc and SSAc readily gave rise to self-protonated and semi-conductive EM powders, with the conductivity increasing with the extent of grafting. However, steric hindrance and spatial configuration of the grafted chains had substantially limited the extent of protonation of the EM substrate by the protonic acid functional groups of these chains. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3279 / 3287
页数:9
相关论文
共 60 条
[1]   Inhibition of corrosion of steels with the exploitation of conducting polymers [J].
Ahmad, N ;
MacDiarmid, AG .
SYNTHETIC METALS, 1996, 78 (02) :103-110
[2]   THERMAL-STABILITY OF CHEMICALLY SYNTHESIZED POLYANILINE [J].
AMANO, K ;
ISHIKAWA, H ;
KOBAYASHI, A ;
SATOH, M ;
HASEGAWA, E .
SYNTHETIC METALS, 1994, 62 (03) :229-232
[3]   POLYANILINE - SOLUTIONS, FILMS AND OXIDATION-STATE [J].
ANGELOPOULOS, M ;
ASTURIAS, GE ;
ERMER, SP ;
RAY, A ;
SCHERR, EM ;
MACDIARMID, AG ;
AKHTAR, M ;
KISS, Z ;
EPSTEIN, AJ .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1988, 160 :151-163
[4]  
[Anonymous], 1997, HDB ORGANIC CONDUCTI
[5]  
[Anonymous], J CHEM SOC
[6]   IMPROVED CONDUCTIVITY OF POLYANILINE BY COUNTER-ION-INDUCED PROCESSABILITY [J].
BEYER, G ;
STECKENBIEGLER, B .
SYNTHETIC METALS, 1993, 60 (02) :169-170
[7]  
Billingham N. C., 1980, ADV POLYM SCI, V90, P2
[8]   SPECTROSCOPIC AND ELECTRICAL CHARACTERIZATION OF SOME ANILINE OLIGOMERS AND POLYANILINE [J].
CAO, Y ;
LI, SZ ;
XUE, ZJ ;
GUO, D .
SYNTHETIC METALS, 1986, 16 (03) :305-315
[9]   COUNTERION INDUCED PROCESSIBILITY OF CONDUCTING POLYANILINE AND OF CONDUCTING POLYBLENDS OF POLYANILINE IN BULK POLYMERS [J].
CAO, Y ;
SMITH, P ;
HEEGER, AJ .
SYNTHETIC METALS, 1992, 48 (01) :91-97
[10]   SYNTHESIS OF WATER-SOLUBLE SELF-ACID-DOPED POLYANILINE [J].
CHEN, SA ;
HWANG, GW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (17) :7939-7940