Shape optimization solutions via Monge-Kantorovich equation

被引:67
作者
Bouchitte, G [1 ]
Buttazzo, G [1 ]
Seppecher, P [1 ]
机构
[1] UNIV PISA,DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 324卷 / 10期
关键词
D O I
10.1016/S0764-4442(97)87909-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the optimization problem max{epsilon(mu) : mu nonnegative measure, integral d mu = m}, where epsilon(mu) is the energy associated to mu: epsilon(mu) = inf{1/2 integral \du\(2) d mu - [f, u] : u is an element of D(R-n)}. The datum f is a signed measure with finite total variation and zero average. We show that the optimization problem above admits a solution which is not in L-1(R-n) in general. This solution comes out by solving a suitable Monge-Kantorovich equation.
引用
收藏
页码:1185 / 1191
页数:7
相关论文
共 9 条
[1]  
ALLAIRE G, 1993, EUR J MECH A-SOLID, V12, P839
[2]  
Bendsoe M.P., 1989, STRUCTURAL OPTIMIZAT, V1, P193, DOI [10.1007/BF01650949, DOI 10.1007/BF01650949]
[3]   Energies with respect to a measure and applications to low dimensional structures [J].
Bouchitte, G ;
Buttazzo, G ;
Seppecher, P .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (01) :37-54
[4]   AN EXAMPLE OF A MAX-MIN PROBLEM IN PARTIAL DIFFERENTIAL EQUATIONS [J].
CEA, J ;
MALANOWS.K .
SIAM JOURNAL ON CONTROL, 1970, 8 (03) :305-&
[5]  
EVANS LC, 1996, DIFFERENTIAL EQUATIO
[6]   OPTIMAL-DESIGN AND RELAXATION OF VARIATIONAL-PROBLEMS .1. [J].
KOHN, RV ;
STRANG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (01) :113-137
[7]   OPTIMAL-DESIGN AND RELAXATION OF VARIATIONAL-PROBLEMS .2. [J].
KOHN, RV ;
STRANG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :139-182
[8]   OPTIMAL-DESIGN AND RELAXATION OF VARIATIONAL-PROBLEMS .3. [J].
KOHN, RV ;
STRANG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (03) :353-377
[9]  
Murat F, 1985, RES NOTES MATH, P1