DNA repair and transcriptional effects of mutations in TFIIH in Drosophila development

被引:29
作者
Merino, C [1 ]
Reynaud, E [1 ]
Vázquez, M [1 ]
Zurita, M [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Biotechnol, Dept Genet & Mol Physiol, Morelos 62250, Mexico
关键词
D O I
10.1091/mbc.E02-02-0087
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mutations in XPB and XPD TFIIH helicases have been related with three hereditary human disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. The dual role of TFIIH in DNA repair and transcription makes it difficult to discern which of the mutant TFIIH phenotypes is due to defects in any of these different processes. We used haywire (hay), the Drosophila XPB homolog, to dissect this problem. Our results show that when hay dosage is affected, the fly shows defects in structures that require high levels of transcription. We found a genetic interaction between hay and cdk7, and we propose that some of these phenotypes are due to transcriptional deficiencies. We also found more apoptotic cells in imaginal discs and in the CNS of hay mutant flies than in wild-type flies. Because this abnormal level of apoptosis was not detected in cdk7 flies, this phenotype could be related to defects in DNA repair. In addition the apoptosis induced by p53 Drosophila homolog (Dmp53) is suppressed in heterozygous hay flies.
引用
收藏
页码:3246 / 3256
页数:11
相关论文
共 61 条
[1]  
ABRAMS JM, 1993, DEVELOPMENT, V117, P29
[2]   Drosophila p53 binds a damage response element at the reaper locus [J].
Brodsky, MH ;
Nordstrom, W ;
Tsang, G ;
Kwan, E ;
Rubin, GM ;
Abrams, JM .
CELL, 2000, 101 (01) :103-113
[3]   DNA-REPAIR AND TRANSCRIPTION - THE HELICASE CONNECTION [J].
BURATOWSKI, S .
SCIENCE, 1993, 260 (5104) :37-38
[4]  
BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5
[5]   TARGETED EXPRESSION OF THE SIGNALING MOLECULE DECAPENTAPLEGIC INDUCES PATTERN DUPLICATIONS AND GROWTH ALTERATIONS IN DROSOPHILA WINGS [J].
CAPDEVILA, J ;
GUERRERO, I .
EMBO JOURNAL, 1994, 13 (19) :4459-4468
[6]   p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells [J].
Chen, XB ;
Ko, LJ ;
Jayaraman, L ;
Prives, C .
GENES & DEVELOPMENT, 1996, 10 (19) :2438-2451
[7]   Transcriptional healing [J].
Citterio, E ;
Vermeulen, W ;
Hoeijmakers, JHJ .
CELL, 2000, 101 (05) :447-450
[8]   Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum [J].
Cleaver, JE .
JOURNAL OF DERMATOLOGICAL SCIENCE, 2000, 23 (01) :1-11
[9]   Transcription elongation and human disease [J].
Conaway, JW ;
Conaway, RC .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :301-319
[10]   A mouse model for the basal transcription DNA repair syndrome trichothiodystrophy [J].
de Boer, J ;
de Wit, J ;
van Steeg, H ;
Berg, RJW ;
Morreau, H ;
Visser, P ;
Lehmann, AR ;
Duran, M ;
Hoeijmakers, JHJ ;
Weeda, G .
MOLECULAR CELL, 1998, 1 (07) :981-990