Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents

被引:63
作者
Kim, Do Hwan [1 ,3 ]
Mei, Jianguo [1 ]
Ayzner, Alexander L. [1 ,2 ]
Schmidt, Kristin [2 ]
Giri, Gaurav [1 ]
Appleton, Anthony L. [1 ]
Toney, Michael F. [2 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[3] Soongsil Univ, Dept Organ Mat & Fiber Engn, Seoul 156743, South Korea
关键词
HETEROJUNCTION SOLAR-CELLS; LOW-BANDGAP POLYMER; SIDE-CHAINS; DEVICES; LAYERS;
D O I
10.1039/c3ee43541e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate high-performance sequentially solution-processed organic photovoltaics (OPVs) with a power conversion efficiency (PCE) of 5% for blend films using a donor polymer based on the isoindigobithiophene repeat unit (PII2T-C10C8) and a fullerene derivative [ 6,6]-phenyl-C[ 71]-butyric acid methyl ester (PC71BM). This has been accomplished by systematically controlling the swelling and intermixing processes of the layer with various processing solvents during deposition of the fullerene. We find that among the solvents used for fullerene deposition that primarily swell but do not re-dissolve the polymer underlayer, there were significant microstructural differences between chloro and o-dichlorobenzene solvents (CB and ODCB, respectively). Specifically, we show that the polymer crystallite orientation distribution in films where ODCB was used to cast the fullerene is broad. This indicates that out-of-plane charge transport through a tortuous transport network is relatively efficient due to a large density of inter-grain connections. In contrast, using CB results in primarily edge-on oriented polymer crystallites, which leads to diminished out-of-plane charge transport. We correlate these microstructural differences with photocurrent measurements, which clearly show that casting the fullerene out of ODCB leads to significantly enhanced power conversion efficiencies. Thus, we believe that tuning the processing solvents used to cast the electron acceptor in sequentially-processed devices is a viable way to controllably tune the blend film microstructure.
引用
收藏
页码:1103 / 1109
页数:7
相关论文
共 27 条
[1]   Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells [J].
Ayzner, Alexander L. ;
Tassone, Christopher J. ;
Tolbert, Sarah H. ;
Schwartz, Benjamin J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :20050-20060
[2]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[3]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[4]  
2-A
[5]   Recent progress in the morphology of bulk heterojunction photovoltaics [J].
Brady, Michael A. ;
Su, Gregory M. ;
Chabinyc, Michael L. .
SOFT MATTER, 2011, 7 (23) :11065-11077
[6]   P3HT Nanopillars for Organic Photovoltaic Devices Nanoimprinted by AAO Templates [J].
Chen, Dian ;
Zhao, Wei ;
Russell, Thomas P. .
ACS NANO, 2012, 6 (02) :1479-1485
[7]   Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion [J].
Chen, Dian ;
Liu, Feng ;
Wang, Cheng ;
Nakahara, Atsuhiro ;
Russell, Thomas P. .
NANO LETTERS, 2011, 11 (05) :2071-2078
[8]   Morphology characterization in organic and hybrid solar cells [J].
Chen, Wei ;
Nikiforov, Maxim P. ;
Darling, Seth B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) :8045-8074
[9]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Dennler, Gilles ;
Scharber, Markus C. ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2009, 21 (13) :1323-1338
[10]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]