Evaluation of Legendre functions of argument greater than one

被引:9
作者
Gil, A
Segura, J
机构
[1] CSIC,CTR MIXTO UNIV VALENCIA,IFIC,BURJASSOT 46100,VALENCIA,SPAIN
[2] UNIV ALICANTE,ESCUELA POLITECN SUPER,DEPT INGN SISTEMAS & COMUNICAC,E-03080 ALICANTE,SPAIN
关键词
Legendre functions; toroidal functions; continued fraction;
D O I
10.1016/S0010-4655(97)00076-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present an algorithm to evaluate Legendre functions of the first and second kinds (P(v)Q(v)) for integral and half-integral order and argument greater than one. The code is based on the calculation of the continued fraction for the Q's, the Wronskian relating P's and Q's and the application of forward recurrence relations for the P's and backward recurrence for the Q's. We also show an application of these algorithms to the evaluation of the electrostatic field due to a charged toroidal conductor at potential V. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 11 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]  
[Anonymous], SPECIAL FUNCTIONS TH
[3]   COMPUTING ELLIPTIC INTEGRALS BY DUPLICATION [J].
CARLSON, BC .
NUMERISCHE MATHEMATIK, 1979, 33 (01) :1-16
[4]   ALGORITHM 577 - ALGORITHMS FOR INCOMPLETE ELLIPTIC INTEGRALS [S21] [J].
CARLSON, BC ;
NOTIS, EM .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1981, 7 (03) :398-403
[5]   COMPUTATION ASPECTS OF 3-TERM RECURRENCE RELATIONS [J].
GAUTSCHI, W .
SIAM REVIEW, 1967, 9 (01) :24-&
[6]   GENERATING BESSEL FUNCTIONS IN MIE SCATTERING CALCULATIONS USING CONTINUED FRACTIONS [J].
LENTZ, WJ .
APPLIED OPTICS, 1976, 15 (03) :668-671
[7]   ASSOCIATED LEGENDRE FUNCTIONS ON THE CUT [J].
OLVER, FWJ ;
SMITH, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 51 (03) :502-518
[8]  
PRESS WH, 1992, NUMERICAL RECIPES FO, pCH5
[9]   A CODE TO CALCULATE (HIGH-ORDER) BESSEL-FUNCTIONS BASED ON THE CONTINUED FRACTIONS METHOD [J].
RATIS, YL ;
DECORDOBA, PF .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 76 (03) :381-388
[10]   A code to evaluate modified Bessel functions based on the continued fraction method [J].
Segura, J ;
deCordoba, PF ;
Ratis, YL .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 105 (2-3) :263-272