Proteome profiling of Populus euphratica Oliv.: Upon heat stress

被引:148
作者
Ferreira, Silvia
Hjerno, Karin
Larsen, Martin
Wingsle, Gunnar
Larsen, Peter
Fey, Stephen
Roepstorff, Peter
Pais, Maria Salome
机构
[1] Univ Lisbon, Fac Sci, Unit Mol Biol & Plant Biotechnol, Inst Appl Sci & Technol, P-1749016 Lisbon, Portugal
[2] Univ So Denmark, Dept Biochem & Mol Biol, Prot Res Grp, DK-5230 Odense M, Denmark
[3] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, SE-90187 Umea, Sweden
[4] Univ So Denmark, Ctr Proteome Anal Life Sci, DK-5230 Odense M, Denmark
关键词
Populus euphratica; moderate heat stress; mass spectrometry; proteome profiling; carbon metabolism;
D O I
10.1093/aob/mcl106
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims Populus euphratica is a light-demanding species ecologically characterized as a pioneer. It grows in shelter belts along riversides, being part of the natural desert forest ecosystems in China and Middle Eastern countries. It is able to survive extreme temperatures, drought and salt stress, marking itself out as an important plant species to study the mechanisms responsible for survival of woody plants under heat stress. 9 Methods Heat effects were evaluated through electrolyte leakage on leaf discs, and LT50 was determined to occur above 50 degrees C. Protein accumulation profiles of leaves from young plants submitted to 42/37 degrees C for 3 d in a phytotron were determined through 2D-PAGE, and a total of 45% of up- and downregulated proteins were detected. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)/TOF analysis, combined with searches in different databases, enabled the identification of 82% of the selected spots. Key Results Short-term upregulated proteins are related to membrane destabilization and cytoskeleton restructuring, sulfur assimilation, thiamine and hydrophobic amino acid biosynthesis, and protein stability. Long-term upregulated proteins are involved in redox homeostasis and photosynthesis. Late downregulated proteins are involved mainly in carbon metabolism. Conclusions Moderate heat response involves proteins related to lipid biogenesis, cytoskeleton structure, sulfate assimilation, thiamine and hydrophobic amino acid biosynthesis, and nuclear transport. Photostasis is achieved through carbon metabolism adjustment, a decrease of photosystem II (PSII) abundance and an increase of PSI contribution to photosynthetic linear electron flow. Thioredoxin h may have a special role in this process in P. euphratica upon moderate heat exposure.
引用
收藏
页码:361 / 377
页数:17
相关论文
共 90 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   THE PSI-E SUBUNIT OF PHOTOSYSTEM-I BINDS FERREDOXIN-NADP+ OXIDOREDUCTASE [J].
ANDERSEN, B ;
SCHELLER, HV ;
MOLLER, BL .
FEBS LETTERS, 1992, 311 (02) :169-173
[3]  
AVITAL S, 1991, J BIOL CHEM, V266, P7067
[4]   Evidence for the thiamine biosynthetic pathway in higher-plant plastids and its developmental regulation [J].
Belanger, FC ;
Leustek, T ;
Chu, BY ;
Kriz, AL .
PLANT MOLECULAR BIOLOGY, 1995, 29 (04) :809-821
[5]  
Besse I, 1997, BOT BULL ACAD SINICA, V38, P1
[6]   Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1 [J].
Bharti, K ;
von Koskull-Döring, P ;
Bharti, S ;
Kumar, P ;
Tintschl-Körbitzer, A ;
Treuter, E ;
Nover, L .
PLANT CELL, 2004, 16 (06) :1521-1535
[7]   The ice plant cometh: Lessons in abiotic stress tolerance [J].
Bohnert, HJ ;
Cushman, JC .
JOURNAL OF PLANT GROWTH REGULATION, 2000, 19 (03) :334-346
[8]   A genomics approach towards salt stress tolerance [J].
Bohnert, HJ ;
Ayoubi, P ;
Borchert, C ;
Bressan, RA ;
Burnap, RL ;
Cushman, JC ;
Cushman, MA ;
Deyholos, M ;
Fischer, R ;
Galbraith, DW ;
Hasegawa, PM ;
Jenks, M ;
Kawasaki, S ;
Koiwa, H ;
Kore-eda, S ;
Lee, BH ;
Michalowski, CB ;
Misawa, E ;
Nomura, M ;
Ozturk, N ;
Postier, B ;
Prade, R ;
Song, CP ;
Tanaka, Y ;
Wang, H ;
Zhu, JK .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2001, 39 (3-4) :295-311
[9]   Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert -: art. no. R101 [J].
Brosché, M ;
Vinocur, B ;
Alatalo, ER ;
Lamminmäki, A ;
Teichmann, T ;
Ottow, EA ;
Djilianov, D ;
Afif, D ;
Bogeat-Triboulot, MB ;
Altman, A ;
Polle, A ;
Dreyer, E ;
Rudd, S ;
Lars, P ;
Auvinen, P ;
Kangasjärvi, J .
GENOME BIOLOGY, 2005, 6 (12)
[10]   Plant proteome analysis [J].
Cánovas, FM ;
Dumas-Gaudot, E ;
Recorbet, G ;
Jorrin, J ;
Mock, HP ;
Rossignol, M .
PROTEOMICS, 2004, 4 (02) :285-298