Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking

被引:26
作者
Deng, Yi [1 ]
Shaevitz, Joshua W. [1 ]
机构
[1] Princeton Univ, Dept Phys, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
基金
美国国家卫生研究院;
关键词
OPTICAL RECONSTRUCTION MICROSCOPY; FLUORESCENCE MICROSCOPY; LIGHT-MICROSCOPY; REFRACTIVE-INDEX; RESOLUTION; SUPERRESOLUTION; LIMIT;
D O I
10.1364/AO.48.001886
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Many single-particle tracking and localization-based superresolution imaging techniques use the width of a single lateral fluorescence image to estimate a molecule's axial position. This determination is often done by use of a calibration data set derived from a source adhered to a glass-water interface. However, for sources deeper in solution, aberrations will change the relationship between the image width and the axial position. We analyzed the depth-varying point spread function of a high numerical aperture objective near an index of refraction mismatch at the water-glass interface using an optical trap. In addition to the well-known focal shift, spherical aberrations cause up to 30% relative systematic error in axial position estimation. This effect is nonuniform in depth, and we find that, although molecules below the focal plane are correctly localized, molecules deeper than the focal plane are found to be lower than their actual positions. (C) 2009 Optical Society of America
引用
收藏
页码:1886 / 1890
页数:5
相关论文
共 22 条
  • [1] A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles
    Aguet, F
    Van De Ville, D
    Unser, M
    [J]. OPTICS EXPRESS, 2005, 13 (26): : 10503 - 10522
  • [2] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [3] BEWERSDORF J, 2006, HDB BIOL CONFOCAL MI, pCH29
  • [4] 2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY
    DENK, W
    STRICKLER, JH
    WEBB, WW
    [J]. SCIENCE, 1990, 248 (4951) : 73 - 76
  • [5] Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy
    Diaspro, A
    Federici, F
    Robello, M
    [J]. APPLIED OPTICS, 2002, 41 (04) : 685 - 690
  • [6] Gustafsson MGL, 1999, J MICROSC-OXFORD, V195, P10, DOI 10.1046/j.1365-2818.1999.00576.x
  • [7] Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution
    Gustafsson, MGL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (37) : 13081 - 13086
  • [8] PROPERTIES OF A 4PI CONFOCAL FLUORESCENCE MICROSCOPE
    HELL, S
    STELZER, EHK
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (12) : 2159 - 2166
  • [9] BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY
    HELL, SW
    WICHMANN, J
    [J]. OPTICS LETTERS, 1994, 19 (11) : 780 - 782
  • [10] Ultra-high resolution imaging by fluorescence photoactivation localization microscopy
    Hess, Samuel T.
    Girirajan, Thanu P. K.
    Mason, Michael D.
    [J]. BIOPHYSICAL JOURNAL, 2006, 91 (11) : 4258 - 4272