The congestion of n-cube layout on a rectangular grid

被引:69
作者
Bezrukov, SL [1 ]
Chavez, JD
Harper, LH
Röttger, M
Schroeder, UP
机构
[1] Univ Wisconsin, Dept Math & Comp Sci, Superior, WI 54880 USA
[2] Calif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USA
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[4] Univ Gesamthsch Paderborn, Dept Math & Comp Sci, D-33102 Paderborn, Germany
关键词
embedding; edge congestion; edge-isoperimetric problem; hypercubes; grids;
D O I
10.1016/S0012-365X(99)00162-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of embedding the n-dimensional cube into a rectangular grid with 2(n) vertices in such a way as to minimize the congestion, the maximum number of edges along any point of the grid. After presenting a short solution for the cutwidth problem of the n-cube (in which the n-cube is embedded into a path), we show how to extend the results to give an exact solution for the congestion problem. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 5 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
CHUNG FRK, 1988, SELECTED TOPICS GRAP, V3, P151
[3]   OPTIMAL ASSIGNMENTS OF NUMBERS TO VERTICES [J].
HARPER, LH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (01) :131-135
[4]  
HARPER LH, IN PRESS GLOBAL METH
[5]  
Nakano K., 1994, LECT NOTES COMPUTER, V790, P364