Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae

被引:147
作者
MacDiarmid, CW
Milanick, MA
Eide, DJ
机构
[1] Univ Missouri, Dept Nutr Sci, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Physiol, Columbia, MO 65211 USA
关键词
D O I
10.1074/jbc.M205052200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The yeast vacuole plays an important role in zinc homeostasis by storing zinc for later use under deficient conditions, sequestering excess zinc for its detoxification, and buffering rapid changes in intracellular zinc levels. The mechanisms involved in vacuolar zinc sequestration are only poorly characterized. Here we describe the properties of zinc transport systems in yeast vacuolar membrane vesicles. The major zinc transport activities in these vesicles were ATP-dependent, requiring a H+ gradient generated by the V-ATPase for function. One system we identified was dependent on the ZRC1 gene, which encodes a member of the cation diffusion facilitator family of metal transporters. These data are consistent with the proposed role of Zrc1 as a vacuolar zinc transporter. Zrc1-independent activity was also observed that was not dependent on the closely related vacuolar Cot1 protein. Both Zrc1-dependent and independent activities showed a high specificity for Zn2+ over other physiologically relevant substrates such as Ca2+, Fe2+, and Mn2+. Moreover, these systems had high affinities for zinc with apparent K-m values in the 100-200 nm range. These results provide biochemical insight into the important role of Zrc1 and related proteins in eukaryotic zinc homeostasis.
引用
收藏
页码:39187 / 39194
页数:8
相关论文
共 40 条
[1]   CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp strain CH34 [J].
Anton, A ;
Grosse, C ;
Reissmann, J ;
Pribyl, T ;
Nies, DH .
JOURNAL OF BACTERIOLOGY, 1999, 181 (22) :6876-6881
[2]   Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes [J].
Bloss, T ;
Clemens, S ;
Nies, DH .
PLANTA, 2002, 214 (05) :783-791
[3]   A FAMILY OF LOW AND HIGH COPY REPLICATIVE, INTEGRATIVE AND SINGLE-STRANDED SACCHAROMYCES-CEREVISIAE ESCHERICHIA-COLI SHUTTLE VECTORS [J].
BONNEAUD, N ;
OZIERKALOGEROPOULOS, O ;
LI, GY ;
LABOUESSE, M ;
MINVIELLESEBASTIA, L ;
LACROUTE, F .
YEAST, 1991, 7 (06) :609-615
[4]   ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli [J].
Brocklehurst, KR ;
Hobman, JL ;
Lawley, B ;
Blank, L ;
Marshall, SJ ;
Brown, NL ;
Morby, AP .
MOLECULAR MICROBIOLOGY, 1999, 31 (03) :893-902
[5]   Molecular aspects of the endocytic pathway [J].
Clague, MJ .
BIOCHEMICAL JOURNAL, 1998, 336 :271-282
[6]   INTERACTIONS BETWEEN GENE-PRODUCTS INVOLVED IN DIVALENT-CATION TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
CONKLIN, DS ;
CULBERTSON, MR ;
KUNG, C .
MOLECULAR AND GENERAL GENETICS, 1994, 244 (03) :303-311
[7]   Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells [J].
Costello, LC ;
Liu, YY ;
Franklin, RB ;
Kennedy, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (46) :28875-28881
[8]   THE VACUOLAR H+-ATPASE OF SACCHAROMYCES-CEREVISIAE IS REQUIRED FOR EFFICIENT COPPER DETOXIFICATION, MITOCHONDRIAL-FUNCTION, AND IRON-METABOLISM [J].
EIDE, DJ ;
BRIDGHAM, JT ;
ZHAO, Z ;
MATTOON, JR .
MOLECULAR AND GENERAL GENETICS, 1993, 241 (3-4) :447-456
[9]   The molecular biology of metal ion transport in Saccharomyces cerevisiae [J].
Eide, DJ .
ANNUAL REVIEW OF NUTRITION, 1998, 18 :441-469
[10]   Macromolecular crowding: obvious but underappreciated [J].
Ellis, RJ .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (10) :597-604