Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation

被引:139
作者
Hayashi, T [1 ]
Su, TP [1 ]
机构
[1] NIH, Cellular Pathobiol Unit, Dev & Plascic Sect,Cellular Neurobiol Res Branch, Intramural Res Program,US Dept Hlth& Human Serv, Baltimore, MD 21224 USA
关键词
D O I
10.1073/pnas.0402890101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the brain, myelin is important in regulating nerve conduction and neurotransmitter release by providing insulation at axons. Myelin is a specialized yet continuous sheet structure of differentiated oligodendrocytes (OLs) that is enriched in lipids, specifically galactosylceramides (GalCer) originated at the endoplasmic reticulum (ER). GalCer are known to affect OL differentiation. However, the mechanism whereby GalCer affect OL differentiation is not well understood. Sigma-1 receptors (Sig-1Rs), shown by us to exist in detergent-insoluble lipid microdomains at lipid-enriched loci of ER in NG108 cells, are important in the compartmentalization/ transport of ER-synthesized lipids and in cellular differentiation. In this study, we used rat primary hippocampal cultures and found that Sig-1Rs form GalCer-enriched lipid rafts at ER lipid droplet-like structures in the entire myelin sheet of mature OLs. In rat OL progenitors (CG-4 cells), levels of lipid raft-residing Sig-1Rs and GalCer increase as cells differentiate. Sig-1Rs also increase in OLs and myelin of developing rat brains. Sig-1R, GalCer, and cholesterol are colocalized and are resistant to the Triton X-100 solubilization. Treating cells with a Sig-1R agonist or targeting Sig-1Rs at lipid rafts by overexpression of Sig-1Rs in CG-4 cells enhances differentiation, whereas reducing Sig-1Rs at lipid rafts by transfection of functionally dominant-negative Sig-1Rs attenuates differentiation. Furthermore, Sig-1R siRNA inhibits differentiation. Our findings indicate that, in the brain, Sig-1Rs targeting GalCer-containing lipid microdomains are important for OL differentiation and that Sig-1Rs may play an important role in the pathogenesis of certain demyelinating diseases.
引用
收藏
页码:14949 / 14954
页数:6
相关论文
共 34 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   The sigma receptor as a ligand-regulated auxiliary potassium channel subunit [J].
Aydar, E ;
Palmer, CP ;
Klyachko, VA ;
Jackson, MB .
NEURON, 2002, 34 (03) :399-410
[3]  
Bansal R, 1999, J NEUROSCI, V19, P7913
[4]   Axonal control of oligodendrocyte development [J].
Barres, BA ;
Raff, MC .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1123-1128
[5]   Neurosteroids: A novel function of the brain [J].
Baulieu, EE .
PSYCHONEUROENDOCRINOLOGY, 1998, 23 (08) :963-987
[6]  
Dasgupta S, 2001, J LIPID RES, V42, P301
[7]   Cholesterol metabolism in the brain [J].
Dietschy, JM ;
Turley, SD .
CURRENT OPINION IN LIPIDOLOGY, 2001, 12 (02) :105-112
[8]   SIGMA-RECEPTORS - FROM MOLECULE TO MAN [J].
FERRIS, CD ;
HIRSCH, DJ ;
BROOKS, BP ;
SNYDER, SH .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (03) :729-737
[9]   Purification, molecular cloning, and expression of the mammalian sigma(1)-binding site [J].
Hanner, M ;
Moebius, FF ;
Flandorfer, A ;
Knaus, HG ;
Striessnig, J ;
Kempner, E ;
Glossmann, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :8072-8077
[10]   σ-1 receptors (σ1 binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum:: Roles in endoplasmic reticulum lipid compartmentalization and export [J].
Hayashi, T ;
Su, TP .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2003, 306 (02) :718-725