Phenotypic and genotypic detection of ESBL mediated cephalosporin resistance in Klebsiella pneumoniae:: Emergence of high resistance against cefepime, the fourth generation cephalosporin

被引:36
作者
Grover, S. S.
Sharma, Meenakshi
Chattopadhya, D.
Kapoor, Hema
Pasha, S. T.
Singh, Gajendra
机构
[1] Natl Inst Communicable Dis, Dept Biochem Biotechnol, Delhi 110054, India
[2] Natl Inst Communicable Dis, Dept Microbiol, Delhi 110054, India
[3] Safdarjang Hosp, Dept Microbiol, New Delhi 110029, India
[4] Guru Nanak Dev Univ, Dept Pharmaceut Sci, Amritsar 143005, Punjab, India
关键词
Klebsiella pneumonioe; cephalosporin; ESBL; PCR;
D O I
10.1016/j.jinf.2005.12.001
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objectives: Cephalosporins belonging to second and third generation are commonly used in India for the treatment of Klebsiella pneumoniae. Report on resistance among K. pneumoniae strains to second and third generation cephalosporins are on rise in this country, which has been attributed to emergence of strains expressing extended-spectrum beta-lactamases (ESBLs). The aim of this study was to evaluate the in vitro susceptibility of K. pneumoniae to broad-spectrum cephalosporins particularly to cefepime, a recently introduced fourth generation cephalosporin in relation to ESBL production. Methods: This study has been carried out in two phases among K. pneumoniae strains isolated between October 2001 and September 2002 (phase I, before marketing of cefepime in India) and between August 2003 and July 2004 (phase II, after marketing of cefepime in India). Minimum Inhibitory Concentration (MIC) was determined by a commercial strip containing gradient of antimicrobials (Strip E-test). Detection for ESBL production was carried out by DDST, E-test ESBL and PCR. Results: Antimicrobial resistance profile of K. pneumoniae strains to five cephalosporins as analyzed by WHONET 5 identified 15 different resistance profiles among the 108 phase I isolates, ranging from resistance to none (19.44%) to all the five cephalosporin (8.33%) and eight different resistance profiles among the 99 phase II isolates, ranging from resistance to none (9.1%) to all the five cephalosporins (36.4%). Among the 108 phase I isolates a total of 71 (65.72%) and out of 99 phase II isolates, a total of 87 (88.0%) could be identified as ESBL producers. Among the isolates, regardless of the phase of the isolation, those characterized by production of ESBL showed overall higher frequency of resistance to cephalosporins (range 19.7-85.9% and 51.7-100% in phase I and phase II, respectively) compared to those for ESBL non-producers (range 0-13.5% and 0-25% in phase I and phase II, respectively). Ten randomly selected isolates from the most common resistance phenotypes probably belonged to a single strain as evident by MIC patterns, genotypic characterization and resistance profile to non-cephalosporin group of antimicrobials thereby pointing out the possibility of an outbreak. Conclusions: PCR may be regarded as a reliable method for detection of ESBL since in addition to the strains that could be identified as ESBL producers by DDST and E-test ESBL; PCR could demonstrate ESBL production among additional 32 strains (115 in phase I and 17 in phase II). Continued uses of cephalosporin group appear to be a potential risk factor for emergence of ESBL producing K. pneumoniae strains. In addition, as noted in the present study, the rise of resistance to cefepime that has been introduced recently in this country for therapeutic use could be of concern. (C) 2006 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 43 条
[1]  
ABIGAIL S, 1995, INDIAN J MED RES, V102, P53
[2]   Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997-1998 [J].
Babini, GS ;
Livermore, DM .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2000, 45 (02) :183-189
[3]   Extended-spectrum β-lactamases in the 21st century:: Characterization, epidemiology, and detection of this important resistance threat [J].
Bradford, PA .
CLINICAL MICROBIOLOGY REVIEWS, 2001, 14 (04) :933-951
[4]  
Cao Wei, 2002, Hunan Yike Daxue Xuebao, V27, P77
[5]   Argentinean collaborative multicenter study on the in vitro comparative activity of piperacillin-tazobactam against selected bacterial isolates recovered from hospitalized patients [J].
Casellas, JM ;
Tomé, G ;
Bantar, C ;
Bertolini, P ;
Blázquez, N ;
Borda, N ;
Couto, E ;
Cudmani, N ;
Guerrera, J ;
Juárez, MJ ;
López, T ;
Littvik, A ;
Méndez, E ;
Notario, R ;
Ponce, G ;
Quinteros, M ;
Salamone, F ;
Sparo, M ;
Sutich, E ;
Vaylet, S ;
Wolff, L .
DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2003, 47 (03) :527-537
[6]   SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand [J].
Chanawong, A ;
M'Zali, FH ;
Heritage, J ;
Lulitanond, A ;
Hawkey, PM .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2001, 48 (06) :839-852
[7]   Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae:: Gene evolution in northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26 [J].
Chang, FY ;
Siu, LK ;
Fung, CP ;
Huang, MH ;
Ho, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (09) :2407-2413
[8]  
CHEN MJ, 2003, ZHONGHUA YI XUE ZA Z, V85, P375
[9]   Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum β-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000) [J].
Coque, TM ;
Oliver, A ;
Pérez-Díaz, C ;
Baquero, F ;
Cantón, R .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (02) :500-510
[10]  
Daoud Z, 2003, Rev Esp Quimioter, V16, P233