A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries

被引:84
作者
Jiang, Yan-Xia
Chen, Zuo-Feng
Zhuang, Quan-Chao
Xu, Jin-Mei
Dong, Quan-Feng
Huang, Ling
Sun, Shi-Gang
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Powerlong Battery Res Inst, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
composite microporous polymer electrolyte; mesoporous sieves; PVdF-HFP; lithium ion batteries; interfacial properties;
D O I
10.1016/j.jpowsour.2006.02.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular sieves of NaY, MCM-41, and SBA-15 were used as fillers in a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer matrix to prepare microporous composite polymer electrolyte. The SBA-15-based composite polymer film was found to show rich pores that account for an ionic conductivity of 0.50 mS cm(-1). However, the MCM-41 and NaY composite polymer films exhibited compact structure without any pores, and the addition of MCM-41 even resulted in aggregation of fillers in the polymer matrix. These differences were investigated and interpreted by their different compatibility with DMF solvent and PVdF-HFP matrix. Results of linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) have revealed that the addition of SBA-15 has extended the electrochemical stability window of polymer electrolyte, enhanced the interfacial stability of polymer electrolyte with lithium electrode, and inhibited also the crystallization of PVdF-HFP matrix. Half-cell of Li/SBA-15-based polymer electrolyte/MCF was assembled and tested. The results have demonstrated that the coulombic efficiency of the first cycle was around 87.0% and the cell remains 94.0% of the initial capacity after 20 cycles, which showed the potential application of the composite polymer electrolyte in lithium ion batteries. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:1320 / 1328
页数:9
相关论文
共 24 条
[1]   Crystallinity and morphology of PVdF-HFP-based gel electrolytes [J].
Abbrent, S ;
Plestil, J ;
Hlavata, D ;
Lindgren, J ;
Tegenfeldt, J ;
Wendsjö, Å .
POLYMER, 2001, 42 (04) :1407-1416
[2]   Transport and interfacial properties of composite polymer electrolytes [J].
Appetecchi, GB ;
Croce, F ;
Persi, L ;
Ronci, F ;
Scrosati, B .
ELECTROCHIMICA ACTA, 2000, 45 (8-9) :1481-1490
[3]   Vinylidenefluoride-hexafluoropropylene copolymers as hybrid electrolyte components for lithium batteries [J].
Arcella, V ;
Sanguineti, A ;
Quartarone, E ;
Mustarelli, P .
JOURNAL OF POWER SOURCES, 1999, 81 :790-794
[4]   Magnetic modification of the external surfaces in the MCM-41 porous silica: Synthesis, characterization, and functionalization [J].
Bourlinos, AB ;
Simopoulos, A ;
Boukos, N ;
Petridis, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (31) :7432-7437
[5]   Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li [J].
Chu, PP ;
Reddy, MJ ;
Kao, HM .
SOLID STATE IONICS, 2003, 156 (1-2) :141-153
[6]  
GOZDZ AS, 1993, Patent No. 5296318
[7]   Mesoporous zeolite SBA-15 supported nickel diimine catalysts for ethylene polymerization [J].
Guo, C ;
Zhang, D ;
Jin, GX .
CHINESE SCIENCE BULLETIN, 2004, 49 (03) :249-253
[8]   Ion conductivities and interfacial characteristics of the plasticized polymer electrolytes based on poly(methyl methacrylate-co-Li maleate) [J].
Kim, CH ;
Lee, KH ;
Kim, WS ;
Park, JK ;
Seung, DY .
JOURNAL OF POWER SOURCES, 2001, 94 (02) :163-168
[9]   Electrochemical characterization of gel polymer electrolytes prepared with porous membranes [J].
Kim, DW ;
Sun, YK .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :41-45
[10]   ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM [J].
KRESGE, CT ;
LEONOWICZ, ME ;
ROTH, WJ ;
VARTULI, JC ;
BECK, JS .
NATURE, 1992, 359 (6397) :710-712