Non-Gaussian surface pinned by a weak potential

被引:13
作者
Deuschel, JD [1 ]
Velenik, Y [1 ]
机构
[1] TU Berlin, Fachbereich Math, Sekr MA 7 4, D-10623 Berlin, Germany
关键词
D O I
10.1007/s004400070004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a model of a two-dimensional interface of the (continuous) SOS type, with finite-range, strictly convex interactions. We prove that, under an arbitrarily weak pinning potential, the interface is localized. We consider the cases of both square well and delta potentials. Our results extend and generalize previous results for the case of nearest neighbours Gaussian interactions in [7] and [1]. We also obtain the tail behaviour of the height distribution, which is not Gaussian.
引用
收藏
页码:359 / 377
页数:19
相关论文
共 14 条
[1]  
BODINEAU T, LOG SOBOLEV INEQUALI
[2]  
BOLTHAUSEN E, IN PRESS PROBAB THEO
[3]  
BOLTHAUSEN E, IMS LECT NOTES
[4]  
BOLTHAUSEN E, 1997, COMMUN MATH PHYS, V187, P567
[5]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[6]  
DEUSCHEL JD, IN PRESS THEORY RELA
[7]  
DUNLOP F, 1992, ANN I H POINCARE-PHY, V57, P333
[8]   PINNING OF AN INTERFACE BY A WEAK POTENTIAL [J].
DUNLOP, F ;
MAGNEN, J ;
RIVASSEAU, V ;
ROCHE, P .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :71-98
[9]  
FISHBEIN L, 1984, HDB ENV CHEM C, V3, P1
[10]   ON THE ABSENCE OF SPONTANEOUS SYMMETRY-BREAKING AND OF CRYSTALLINE ORDERING IN TWO-DIMENSIONAL SYSTEMS [J].
FROHLICH, J ;
PFISTER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (02) :277-298