共 59 条
Anharmonic Vibrational Spectroscopy Calculations for Proton-Bound Amino Acid Dimers
被引:26
作者:
Adesokan, Adeyemi A.
[1
]
Gerber, R. B.
[1
,2
,3
]
机构:
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Fritz Haber Res Ctr, IL-91904 Jerusalem, Israel
关键词:
SELF-CONSISTENT-FIELD;
INFRARED PHOTODISSOCIATION SPECTROSCOPY;
ION-DIP SPECTROSCOPY;
GAS-PHASE;
AB-INITIO;
CONFORMATIONAL LANDSCAPES;
SEMIEMPIRICAL POTENTIALS;
IR-SPECTRA;
ARGININE;
WATER;
D O I:
10.1021/jp807106h
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Results of anharmonic frequency calculations carried out for GlysLysH(+) and GlyGlyH(+) are presented and compared to gas phase electrospray ionization (ESI) spectroscopy experiments. Anharmonic frequencies are obtained via correlation-corrected vibrational self-consistent field (CC-VSCF) calculations. The potential used is based on the PM3 semiempirical electronic structure method, but improved by fitting to ab initio MP2 calculations at the harmonic level. The key results are as follows: (1) Hydrogens acting as intermolecular bridges have very anharmonic stretches whose frequencies cannot be reliably predicted by the harmonic approximation. An example is the carboxylate bound NH3+ stretch. (2) The computed anharmonic vibrational frequencies are in good agreement with experiment and provides a very large improvement over harmonic frequencies especially for OH and NH stretches. For example the calculated CC-VSCF frequencies of GlysLysH(+) and GlyGlyH(+) have overall average deviations of 1.35% and 1.48% only, respectively, from experiment. (3) The harmonic OH bond stretching frequency deviates by 6.64% from experiments. The CC-VSCF calculations reduce this deviation by more than an order of magnitude to 0.56%. The anharmonicity of the OH stretch is intrinsic, rather than due to coupling with other modes. (4) Anharmonic coupling between the NH3+ stretch and several other normal modes is strong, and provide the main contribution for the anharmonicity of this mode. Properties of the potential energy surfaces of the proton-bound complexes are briefly discussed in light of the results.
引用
收藏
页码:1905 / 1912
页数:8
相关论文