Semi-supervised methods to predict patient survival from gene expression data

被引:519
作者
Bair, E [1 ]
Tibshirani, R
机构
[1] Stanford Univ, Dept Stat, Palo Alto, CA 94304 USA
[2] Stanford Univ, Dept Hlth & Res Policy, Palo Alto, CA 94304 USA
关键词
D O I
10.1371/journal.pbio.0020108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An important goal of DNA microarray research is to develop tools to diagnose cancer more accurately based on the genetic profile of a tumor. There are several existing techniques in the literature for performing this type of diagnosis. Unfortunately, most of these techniques assume that different subtypes of cancer are already known to exist. Their utility is limited when such subtypes have not been previously identified. Although methods for identifying such subtypes exist, these methods do not work well for all datasets. It would be desirable to develop a procedure to find such subtypes that is applicable in a wide variety of circumstances. Even if no information is known about possible subtypes of a certain form of cancer, clinical information about the patients, such as their survival time, is often available. in this study, we develop some procedures that utilize both the gene expression data and the clinical data to identify subtypes of cancer and use this knowledge to diagnose future patients. These procedures were successfully applied to several publicly available datasets. We present diagnostic procedures that accurately predict the survival of future patients based on the gene expression profile and survival times of previous patients. This has the potential to be a powerful tool for diagnosing and treating cancer.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 36 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] Gene-expression profiles predict survival of patients with lung adenocarcinoma
    Beer, DG
    Kardia, SLR
    Huang, CC
    Giordano, TJ
    Levin, AM
    Misek, DE
    Lin, L
    Chen, GA
    Gharib, TG
    Thomas, DG
    Lizyness, ML
    Kuick, R
    Hayasaka, S
    Taylor, JMG
    Iannettoni, MD
    Orringer, MB
    Hanash, S
    [J]. NATURE MEDICINE, 2002, 8 (08) : 816 - 824
  • [3] Ben-Dor A, 2001, P 5 ANN INT C COMP M, P31, DOI DOI 10.1145/369133.369167
  • [4] Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    Bhattacharjee, A
    Richards, WG
    Staunton, J
    Li, C
    Monti, S
    Vasa, P
    Ladd, C
    Beheshti, J
    Bueno, R
    Gillette, M
    Loda, M
    Weber, G
    Mark, EJ
    Lander, ES
    Wong, W
    Johnson, BE
    Golub, TR
    Sugarbaker, DJ
    Meyerson, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) : 13790 - 13795
  • [5] BULLINGER L, 2004, IN PRESS N ENGL J ME
  • [6] Chan WC, 1997, BLOOD, V89, P3909
  • [7] Chu G., 2002, SIGNIFICANCE ANAL MI
  • [8] Diffuse large cell lymphoma
    Coiffier, B
    [J]. CURRENT OPINION IN ONCOLOGY, 2001, 13 (05) : 325 - 334
  • [9] Cox D. R., 1984, Analysis of survival data
  • [10] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868