Origins of chromosomal rearrangement hotspots in the human genome:: evidence from the AZFa deletion hotspots -: art. no. R55

被引:30
作者
Hurles, ME
Willey, D
Matthews, L
Hussain, SS
机构
[1] Univ Cambridge, McDonald Inst Archaeol Res, Mol Genet Lab, Cambridge CB2 3ER, England
[2] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
基金
英国惠康基金;
关键词
D O I
10.1186/gb-2004-5-8-r55
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The origins of the recombination hotspots that are a common feature of both allelic and non-allelic homologous recombination in the human genome are poorly understood. We have investigated, by comparative sequencing, the evolution of two hotspots of non-allelic homologous recombination on the Y chromosome that lie within paralogous sequences known to sponsor deletions resulting in male infertility. Results: These recombination hotspots are characterized by signatures of concerted evolution, which indicate that gene conversion between paralogs has been predominant in shaping their recent evolution. By contrast, the paralogous sequences that surround the hotspots exhibit little evidence of gene conversion. A second feature of these rearrangement hotspots is the extreme interspecific sequence divergence (around 2.5%) that places them among the most divergent orthologous sequences between humans and chimpanzees. Conclusions: Several hominid-specific gene conversion events have rendered these hotspots better substrates for chromosomal rearrangements in humans than in chimpanzees or gorillas. Monte Carlo simulations of sequence evolution suggest that extreme sequence divergence is a direct consequence of gene conversion between paralogs. We propose that the coincidence of signatures of concerted evolution and recurrent breakpoints of chromosomal rearrangement (mapped at the sequence level) may enable the identification of putative rearrangement hotspots from analysis of comparative sequences from great apes.
引用
收藏
页数:19
相关论文
共 41 条
[1]   Multiple pathogenic and benign genomic rearrangements occur at a 35 kb duplication involving the NEMO and LAGE2 genes [J].
Aradhya, S ;
Bardaro, T ;
Galgóczy, P ;
Yamagata, T ;
Esposito, T ;
Patlan, H ;
Ciccodicola, A ;
Munnich, A ;
Kenwrick, S ;
Platzer, M ;
D'Urso, M ;
Nelson, DL .
HUMAN MOLECULAR GENETICS, 2001, 10 (22) :2557-2567
[2]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[3]   Divergent outcomes of intrachromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism [J].
Blanco, P ;
Shlumukova, M ;
Sargent, CA ;
Jobling, MA ;
Affara, N ;
Hurles, ME .
JOURNAL OF MEDICAL GENETICS, 2000, 37 (10) :752-758
[4]   Unexpectedly similar rates of nucleotide substitution found in male and female hominids [J].
Bohossian, HB ;
Skaletsky, H ;
Page, DC .
NATURE, 2000, 406 (6796) :622-625
[5]   A new DNA sequence assembly program [J].
Bonfield, JK ;
Smith, KF ;
Staden, R .
NUCLEIC ACIDS RESEARCH, 1995, 23 (24) :4992-4999
[6]   Dynamics of a human interparalog gene conversion hotspot [J].
Bosch, E ;
Hurles, ME ;
Navarro, A ;
Jobling, MA .
GENOME RESEARCH, 2004, 14 (05) :835-844
[7]   Duplications of the AZFa region of the human Y chromosome are mediated by homologous recombination between HERVs and are compatible with male fertility [J].
Bosch, E ;
Jobling, MA .
HUMAN MOLECULAR GENETICS, 2003, 12 (03) :341-347
[8]   Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees [J].
Chen, FC ;
Li, WH .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (02) :444-456
[9]   Genomewide comparison of DNA sequences between humans and chimpanzees [J].
Ebersberger, I ;
Metzler, D ;
Schwarz, C ;
Pääbo, S .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (06) :1490-1497
[10]   Gene conversion tracts from double-strand break repair in mammalian cells [J].
Elliott, B ;
Richardson, C ;
Winderbaum, J ;
Nickoloff, JA ;
Jasin, M .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (01) :93-101