Existence of non-trivial, vacuum, asymptotically simple spacetimes

被引:92
作者
Chrusciel, PT [1 ]
Delay, E [1 ]
机构
[1] Univ Tours, Fac Sci, Dept Math, F-37200 Tours, France
关键词
D O I
10.1088/0264-9381/19/9/101
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct non-trivial vacuum spacetimes with a global J(+). The construction proceeds by proving extension results for initial data sets across compact boundaries, adapting the gluing arguments of Corvino and Schoen. Another application of the extension results is the existence of initial data which are exactly Schwarzschild both near infinity and near each of the connected component of the apparent horizon. Finally, the construction allows one to add Einstein-Rosen bridges to time-symmetric initial data sets at points satisfying a local parity condition, with the perturbation of the metric localized in an arbitrarily small neighbourhood of the bridge.
引用
收藏
页码:L71 / L79
页数:9
相关论文
共 21 条
[1]  
BARTNIK R, 1993, J DIFFER GEOM, V37, P31
[2]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[3]   THE POINCARE GROUP AS THE SYMMETRY GROUP OF CANONICAL GENERAL-RELATIVITY [J].
BEIG, R ;
MURCHADHA, NO .
ANNALS OF PHYSICS, 1987, 174 (02) :463-498
[4]  
BEIG R, 1996, CLASSICAL QUANT GRAV, V14, pA83
[5]  
Christodoulou D., 1993, NONLINEAR STABILITY
[6]  
CHRUSCIEL PT, 1985, ANN I H POINCARE-PHY, V42, P267
[7]   CORRECTION [J].
CHRUSCIEL, PT .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) :1049-1049
[8]   ON ANGULAR-MOMENTUM AT SPATIAL INFINITY [J].
CHRUSCIEL, PT .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (06) :L205-L210
[9]  
CHRUSCIEL PT, 2001, DGGA0110035
[10]  
CHRUSCIEL PT, 2002, UNPUB LOCALIZED GLUI