Probing Src homology 2 domain ligand interactions by differential line broadening

被引:18
作者
Günther, U
Mittag, T
Schaffhausen, B
机构
[1] Goethe Univ Frankfurt, Bioctr N230, Inst Biophys Chem, D-60439 Frankfurt, Germany
[2] Tufts Univ, Sch Med, Dept Biochem, Boston, MA 02111 USA
关键词
D O I
10.1021/bi0202528
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Few techniques for probing the role of individual amino acids in interactions of a protein with ligands are available. Chemical shift perturbations in NMR spectra provide qualitative information about the response of individual amino acids of a protein to its interactions with ligands. Line shapes derived from N-15-HSQC spectra recorded for different steps of a ligand titration yield both kinetic constants and insight into mechanisms by which the ligand binds. Here we have analyzed line shapes for 37 signals of amino acids of the N-terminal src homology 2 domain (N-SH2) of the 85 kDa subunit of phosphatidylinositol 3-kinase (PI3-K) upon binding of phosphotyrosine (ptyr)-containing peptides. Kinetic rates at individual amino acids of the SH2 varied throughout the structure. For a subset of SH2 residues, the fine structure of the NMR Line shapes indicated slow motions induced by the presence of small amounts of the ligand. These complex line shapes require one or more additional conformational states on the kinetic pathway. Modeling of the observed ligand interactions suggests a quasi-allosteric initial binding step. N-SH2 mutants with altered ligand affinity or specificity were also examined. Analysis of their line shapes revealed three distinct classes of mutants with different kinetic behaviors.
引用
收藏
页码:11658 / 11669
页数:12
相关论文
共 68 条
[1]   The role of PI 3-kinase in insulin action [J].
Alessi, DR ;
Downes, CP .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1998, 1436 (1-2) :151-164
[2]   The Akt kinase:: Molecular determinants of oncogenicity [J].
Aoki, M ;
Batista, O ;
Bellacosa, A ;
Tsichlis, P ;
Vogt, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14950-14955
[3]   Protein folding monitored at individual residues during a two-dimensional NMR experiment [J].
Balbach, J ;
Forge, V ;
Lau, WS ;
vanNuland, NAJ ;
Brew, K ;
Dobson, CM .
SCIENCE, 1996, 274 (5290) :1161-1163
[4]   STRUCTURE OF AN SH2 DOMAIN OF THE P85-ALPHA SUBUNIT OF PHOSPHATIDYLINOSITOL-3-OH KINASE [J].
BOOKER, GW ;
BREEZE, AL ;
DOWNING, AK ;
PANAYOTOU, G ;
GOUT, I ;
WATERFIELD, MD ;
CAMPBELL, ID .
NATURE, 1992, 358 (6388) :684-687
[5]   Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase [J].
Breeze, AL ;
Kara, BV ;
Barratt, DG ;
Anderson, M ;
Smith, JC ;
Luke, RW ;
Best, JR ;
Cartlidge, SA .
EMBO JOURNAL, 1996, 15 (14) :3579-3589
[6]  
Cantrell DA, 2001, J CELL SCI, V114, P1439
[7]   Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase [J].
Chang, HW ;
Aoki, M ;
Fruman, D ;
Auger, KR ;
Bellacosa, A ;
Tsichlis, PN ;
Cantley, LC ;
Roberts, TM ;
Vogt, PK .
SCIENCE, 1997, 276 (5320) :1848-1850
[8]   MODULAR BINDING DOMAINS IN SIGNAL-TRANSDUCTION PROTEINS [J].
COHEN, GB ;
REN, RB ;
BALTIMORE, D .
CELL, 1995, 80 (02) :237-248
[9]   Phosphoinositides in membrane traffic [J].
Corvera, S ;
D'Arrigo, A ;
Stenmark, H .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (04) :460-465
[10]   Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction [J].
Corvera, S ;
Czech, MP .
TRENDS IN CELL BIOLOGY, 1998, 8 (11) :442-446