CD8 effector T cell;
crystal structure;
ERK;
partial agonist;
TCR;
D O I:
10.1002/eji.200635895
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
We have characterized three different programs of activation for alloreactive CD8 T cells expressing the BM3.3 TCR, their elicitation depending on the characteristics of the stimulating peptide/MHC complex. The high-affinity interaction between the TCR and the K-b-associated endogenous peptide pBM1 (INFDFNTI) induced a complete differentiation program into effector cells correlated with sustained ERK activation. The k(bm8) variant elicited a partial activation program with delayed T cell proliferation, poor CTL activity and undetectable ERK phosphorylation; this resulted from a low-avidity interaction of TCR BM3.3 with a newly identified endogenous peptide, pBM8 (SQYYYNSL). Interestingly, mismatched pBM1/k(bm8) complexes induced a split response in BM3.3 T cells, with total reconstitution of T cell proliferation but defective generation of CTL activity that was correlated with strong but shortened ERK phosphorylation. Crystal structures highlight the molecular basis for the higher stability of pBM8/K-bm8 compared to pBM1/K-bm8 complexes that exist in two conformers. This study illustrates the importance of the stability of both peptide/MHC and peptide/MHC-TCR interactions for induction of sustained signaling required to induce optimal CTL effector functions. Subtle allelic structural variations, amplified by peptide selection, may thus orient distinct outcomes of alloreactive TCR-based therapies.