The Role of Ethylene in Plants Under Salinity Stress

被引:121
作者
Tao, Jian-Jun [1 ]
Chen, Hao-Wei [1 ]
Ma, Biao [1 ]
Zhang, Wan-Ke [1 ]
Chen, Shou-Yi [1 ]
Zhang, Jin-Song [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2015年 / 6卷
基金
中国国家自然科学基金;
关键词
ethylene; salinity stress; MHZ; NtTCTP; negative feedback; 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE; F-BOX PROTEINS; SALT-STRESS; TRANSCRIPTION FACTOR; SIGNALING PATHWAYS; GENE-EXPRESSION; RECEPTOR NTHK1; ABSCISIC-ACID; ACC SYNTHASE; FERRIC REDUCTASE;
D O I
10.3389/fpls.2015.01059
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 114 条
[1]  
Abeles FB, 2012, Ethylene in plant biology
[2]   Integration of plant responses to environmentally activated phytohormonal signals [J].
Achard, P ;
Cheng, H ;
De Grauwe, L ;
Decat, J ;
Schoutteten, H ;
Moritz, T ;
Van Der Straeten, D ;
Peng, JR ;
Harberd, NP .
SCIENCE, 2006, 311 (5757) :91-94
[3]   Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato [J].
Albacete, Alfonso ;
Martinez-Andujar, Cristina ;
Ghanem, Michel Edmond ;
Acosta, Manuel ;
Sanchez-Bravo, Jose ;
Asins, Maria J. ;
Cuartero, Jesus ;
Lutts, Stanley ;
Dodd, Ian C. ;
Perez-Alfocea, Francisco .
PLANT CELL AND ENVIRONMENT, 2009, 32 (07) :928-938
[4]   Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase [J].
Ali, Shimaila ;
Charles, Trevor C. ;
Glick, Bernard R. .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 80 :160-167
[5]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[6]   Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis [J].
An, Fengying ;
Zhao, Qiong ;
Ji, Yusi ;
Li, Wenyang ;
Jiang, Zhiqiang ;
Yu, Xiangchun ;
Zhang, Chen ;
Han, Ying ;
He, Wenrong ;
Liu, Yidong ;
Zhang, Shuqun ;
Ecker, Joseph R. ;
Guo, Hongwei .
PLANT CELL, 2010, 22 (07) :2384-2401
[7]   ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum [J].
Barnawal, Deepti ;
Bharti, Nidhi ;
Maji, Deepamala ;
Chanotiya, Chandan Singh ;
Kalra, Alok .
JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (11) :884-894
[8]   Interactions between abscisic acid and ethylene signaling cascades [J].
Beaudoin, N ;
Serizet, C ;
Gosti, F ;
Giraudat, J .
PLANT CELL, 2000, 12 (07) :1103-1115
[9]   The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling [J].
Binder, Brad M. ;
Walker, Joseph M. ;
Gagne, Jennifer M. ;
Emborg, Thomas J. ;
Hemmann, Georg ;
Bleecker, Anthony B. ;
Vierstra, Richard D. .
PLANT CELL, 2007, 19 (02) :509-523
[10]   Ethylene: A gaseous signal molecule in plants [J].
Bleecker, AB ;
Kende, H .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :1-+