Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes

被引:135
作者
Stolze, IP
Tian, YM
Appelhoff, RJ
Turley, H
Wykoff, CC
Gleadle, JM
Ratcliffe, PJ
机构
[1] Univ Oxford, Oxford OX3 7BN, England
[2] Univ Oxford, John Radcliffe Hosp, Canc Res United Kingdom,Tumor Pathol Grp, Nuffield Dept Clin Lab Sci, Oxford OX3 9DU, England
[3] John Radcliffe Hosp, CRUK, Mol Oncol Grp, Weatherall Inst Mol Med, Oxford OX3 9DU, England
关键词
D O I
10.1074/jbc.M406713200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that directs a broad range of cellular responses to hypoxia. Recent studies have defined a set of 2-oxoglutarate and Fe(II)-dependent dioxygenases that modify HIF-alpha subunits by prolyl and asparaginyl hydroxylation. These processes potentially provide a dual system of control, down-regulating both HIF-alpha stability and transcriptional activity. Although genetic analyses in both primitive organisms and mammalian cells have demonstrated a critical role for the prolyl hydroxylase pathway in the regulation of HIF, analogous studies have not been performed on the HIF asparaginyl hydroxylase pathway, and its role in directing the expression of endogenous HIF transcriptional targets has not yet been clearly defined. Here we demonstrate, using small interfering RNA-mediated FIH suppression and controlled overexpression by a doxycycline-inducible system, that alterations in FIH expression in both directions have reciprocal effects on the expression of a range of HIF target genes. These effects were observed in normoxic and severely hypoxic cells but not anoxic cells. Evidence for FIH activity in severely hypoxic cells contrasted with results for the prolyl hydroxylase PHD2, suggesting that these enzymes display different oxygen dependence in vivo, with PHD2 requiring higher levels of oxygen for biological activity. Our results demonstrate an important physiological role for FIH in regulating HIF-dependent target genes over a wide range of oxygen tensions and indicate that inhibition of FIH has the potential to augment HIF target gene expression even in severe hypoxia.
引用
收藏
页码:42719 / 42725
页数:7
相关论文
共 34 条
[1]   Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor [J].
Appelhoff, RJ ;
Tian, YM ;
Raval, RR ;
Turley, H ;
Harris, AL ;
Pugh, CW ;
Ratcliffe, PJ ;
Gleadle, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38458-38465
[2]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[3]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[4]   Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia [J].
Bruick, RK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9082-9087
[5]   Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response [J].
Dames, SA ;
Martinez-Yamout, M ;
De Guzman, RN ;
Dyson, HJ ;
Wright, PE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5271-5276
[6]   The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen [J].
del Peso, L ;
Castellanos, MC ;
Temes, E ;
Martín-Puig, S ;
Cuevas, Y ;
Olmos, G ;
Landázuri, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :48690-48695
[7]  
DEUSCHLE U, 1995, MOL CELL BIOL, V15, P1907
[8]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[9]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54
[10]   Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α [J].
Freedman, SJ ;
Sun, ZYJ ;
Poy, F ;
Kung, AL ;
Livingston, DM ;
Wagner, G ;
Eck, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5367-5372