Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries

被引:89
作者
Chen, Wei [1 ]
Zhang, Zhian [1 ]
Bao, Weizhai [1 ]
Lai, Yanqing [1 ]
Li, Jie [1 ]
Gan, Yongqing [1 ]
Wang, Jianjun [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
MOFs; Li-O-2; batteries; Electrocatalyst; gamma-Fe2O3/carbon; LITHIUM-AIR BATTERIES; IN-SITU; POROUS-CARBON; HIGH-CAPACITY; ALPHA-MNO2; NANORODS; CATALYSTS; ELECTRODE; GRAPHENE; SURFACE; OXIDE;
D O I
10.1016/j.electacta.2014.04.110
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hierarchical mesoporous gamma-Fe2O3/carbon nanocomposites were prepared from metal organic frameworks (MOFs) MIL-100(Fe). The gamma-Fe2O3/carbon nanocomposites and its precursor MIL-100(Fe) was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra (Raman), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry analysis (TGA) and N-2 adsorption/desorption measurements. It is found that the as-prepared materials possess a hierarchical mesoporous nanostructure between the carbon and gamma-Fe203 nanoparticles. When applied as cathode catalysts in rechargeable Li-O-2 batteries, it is demonstrated from the galvanostatic discharge-charge process and cyclicvoltammetry (CV) that the electrode with gamma-Fe2O3/carbon nanocomposites exhibits a lower charge and discharge over-potential, higher discharge capacity and better cycling stability than the pure Super P electrode, indicating its potential as a promising catalyst for Li-O-2 batteries. The electrode with gamma-Fe2O3/carbon nanocomposites shows a discharge capacity up to similar to 5970 mAh g(carbon+catalyst)(-1) at 0.1 mA cm(-2) and a high C-rate performance, and exhibits a very stable discharge voltage plateau of 2.7 V and a charge voltage plateau of similar to 3.75 V. With the addition of gamma-Fe2O3/carbon nanocomposites, the Li-O-2 batteries can obtain good cycle performance over 30 cycles as confining the discharge/charge capacities to 600 mA h g(carbon+catalyst)(-1). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 64 条
[1]   Semiconductor behavior of a metal-organic framework (MOF) [J].
Alvaro, Mercedes ;
Carbonell, Esther ;
Ferrer, Belen ;
Llabres i Xamena, Francesc X. ;
Garcia, Hermenegildo .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (18) :5106-5112
[2]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance [J].
Cao, Yong ;
Wei, Zhikai ;
He, Jiao ;
Zang, Jun ;
Zhang, Qian ;
Zheng, Mingsen ;
Dong, Quanfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9765-9768
[5]   One-step solid-state thermolysis of a metal-organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes [J].
Chen, Linyun ;
Bai, Junfeng ;
Wang, Chunzhao ;
Pan, Yi ;
Scheer, Manfred ;
You, Xiaozeng .
CHEMICAL COMMUNICATIONS, 2008, (13) :1581-1583
[6]   Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods [J].
Chen, Yu-Jin ;
Zhang, Fan ;
Zhao, Guo-gang ;
Fang, Xiao-yong ;
Jin, Hai-Bo ;
Gao, Peng ;
Zhu, Chun-Ling ;
Cao, Mao-Sheng ;
Xiao, G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (20) :9239-9244
[7]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[8]   An O2 cathode for rechargeable lithium batteries:: The effect of a catalyst [J].
Debart, Aurelie ;
Bao, Jianli ;
Armstrong, Graham ;
Bruce, Peter G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1177-1182
[9]   Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium [J].
Descostes, M ;
Mercier, F ;
Thromat, N ;
Beaucaire, C ;
Gautier-Soyer, M .
APPLIED SURFACE SCIENCE, 2000, 165 (04) :288-302
[10]   Structural characterization of milled mesophase pitch-based carbon fibers [J].
Endo, M ;
Kim, C ;
Karaki, T ;
Kasai, T ;
Matthews, MJ ;
Brown, SDM ;
Dresselhaus, MS ;
Tamaki, T ;
Nishimura, Y .
CARBON, 1998, 36 (11) :1633-1641