Tyrosine phosphorylation of inducible nitric oxide synthase: Implications for potential post-translational regulation

被引:79
作者
Pan, JM [1 ]
Burgher, KL [1 ]
Szczepanik, AM [1 ]
Ringheim, GE [1 ]
机构
[1] HOECHST ROUSSEL PHARMACEUT PROPRIETARY LTD,NEUROSCI THERAPEUT DOMAIN,SOMERVILLE,NJ 08876
关键词
D O I
10.1042/bj3140889
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The activation of cultured Raw 264.7 murine macrophages with interferon gamma and lipopolysaccharide results in the expression of inducible nitric oxide synthase (i-NOS) and the subsequent production of nitric oxide. In the present study, the i-NOS expressed in these activated cells was characterized for possible post-translational protein modification by endogenous tyrosine protein kinases. Western-blot analysis using phosphotyrosine antibodies revealed that i-NOS was phosphorylated on tyrosine residues and that this was an early event coinciding with the appearance of newly synthesized i-NOS. A brief exposure of activated cells to vanadate, a tyrosine phosphatase inhibitor, significantly increased the level of i-NOS tyrosine phosphorylation, suggesting that tyrosine phosphatases are dynamically involved in the regulation of this process. Vanadate treatment of activated cells also resulted in a rapid increase in enzyme activity, occurring within 5 min of exposure. Taken together, these results demonstrate that tyrosine kinases and phosphatases are involved in the post-translational modification of i-NOS and may potentially play a role in modulating the functional activity of the enzyme in macrophages.
引用
收藏
页码:889 / 894
页数:6
相关论文
共 36 条
[1]   COMPARISON OF 3 ACTIN-CODING SEQUENCES IN THE MOUSE - EVOLUTIONARY RELATIONSHIPS BETWEEN THE ACTIN GENES OF WARM-BLOODED VERTEBRATES [J].
ALONSO, S ;
MINTY, A ;
BOURLET, Y ;
BUCKINGHAM, M .
JOURNAL OF MOLECULAR EVOLUTION, 1986, 23 (01) :11-22
[2]  
ATKINSON TP, 1992, J IMMUNOL, V148, P2194
[3]  
ATKINSON TP, 1993, J IMMUNOL, V151, P1448
[4]  
BREDT DS, 1992, J BIOL CHEM, V267, P10976
[5]   ISOLATION OF NITRIC-OXIDE SYNTHETASE, A CALMODULIN-REQUIRING ENZYME [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :682-685
[6]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[7]   PHOSPHORYLATION OF NITRIC-OXIDE SYNTHASE BY PROTEIN KINASE-A [J].
BRUNE, B ;
LAPETINA, EG .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 181 (02) :921-926
[8]   CALCIUM-DEPENDENT NITRIC-OXIDE SYNTHESIS IN ENDOTHELIAL CYTOSOL IS MEDIATED BY CALMODULIN [J].
BUSSE, R ;
MULSCH, A .
FEBS LETTERS, 1990, 265 (1-2) :133-136
[9]  
CHAO CC, 1992, J IMMUNOL, V149, P2736
[10]   CALMODULIN IS A SUBUNIT OF NITRIC-OXIDE SYNTHASE FROM MACROPHAGES [J].
CHO, HJ ;
XIE, QW ;
CALAYCAY, J ;
MUMFORD, RA ;
SWIDEREK, KM ;
LEE, TD ;
NATHAN, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 1992, 176 (02) :599-604