Directing a random walker with optimal potentials

被引:4
作者
Idiart, MAP [1 ]
Trevisan, M [1 ]
机构
[1] Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
关键词
D O I
10.1016/S0378-4371(01)00576-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a two-dimensional discrete environment we obtain numerically the potential surface that minimizes the diffusion time for a particle that is guided toward a goal point, for a given temperature. The optimal potential shape is a branched one from the confluence of three factors that helps direct diffusion: the reduction of the dimensionality of the walk, the optimization of the potential shape in one dimension, and the minimization of the paths. We discuss the possible applications of the result to robotic navigation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:52 / 62
页数:11
相关论文
共 10 条
[1]   RANDOM-WALKS ON FRACTALS [J].
BALAKRISHNAN, V .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 32 (03) :201-210
[2]   A model of spatial map formation in the hippocampus of the rat [J].
Blum, KI ;
Abbott, LF .
NEURAL COMPUTATION, 1996, 8 (01) :85-93
[3]   THE APPLICATIONS OF HARMONIC-FUNCTIONS TO ROBOTICS [J].
CONNOLLY, CI ;
GRUPEN, RA .
JOURNAL OF ROBOTIC SYSTEMS, 1993, 10 (07) :931-946
[4]   CONTINUUM MODEL FOR RIVER NETWORKS [J].
GIACOMETTI, A ;
MARITAN, A ;
BANAVAR, JR .
PHYSICAL REVIEW LETTERS, 1995, 75 (03) :577-580
[5]  
IDIART MAP, 2000, UNPUB NETWORK COMPUT
[6]   MODEL FOR THE EVOLUTION OF RIVER NETWORKS [J].
LEHENY, RL ;
NAGEL, SR .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1470-1473
[7]  
REICHL L. E., 1999, A Modern Course in Statistical Physics
[8]   MINIMUM ENERGY AND FRACTAL STRUCTURES OF DRAINAGE NETWORKS [J].
RINALDO, A ;
RODRIGUEZ-ITURBE, I ;
RIGON, R ;
BRAS, RL ;
IJJASZVASQUEZ, E ;
MARANI, A .
WATER RESOURCES RESEARCH, 1992, 28 (09) :2183-2195
[9]  
Rolls E. T., 1998, NEURAL NETWORKS BRAI
[10]   MINIMUM ENERGY-DISSIPATION RIVER NETWORKS WITH FRACTAL BOUNDARIES [J].
SUN, T ;
MEAKIN, P ;
JOSSANG, T .
PHYSICAL REVIEW E, 1995, 51 (06) :5353-5359