The maximum likelihood degree

被引:70
作者
Catanese, Fabrizio
Hosten, Serkan
Khetan, Amit
Sturmfels, Bernd
机构
[1] Univ Bayreuth, Lehrstuhl Math 8, NWII, D-95440 Bayreuth, Germany
[2] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
[3] Univ Massachusetts, Dept Math, Amherst, MA 01002 USA
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1353/ajm.2006.0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximum likelihood estimation in statistics leads to the problem of maximizing a product of powers of polynomials. We study the algebraic degree of the critical equations of this optimization problem. This degree is related to the number of bounded regions in the corresponding arrangement of hypersurfaces, and to the Euler characteristic of the complexified complement. Under suitable hypotheses, the maximum likelihood degree equals the top Chern class of a sheaf of logarithmic differential forms. Exact formulae in terms of degrees and Newton polytopes are given for polynomials with generic coefficients.
引用
收藏
页码:671 / 697
页数:27
相关论文
共 28 条
[1]   THE LEFSCHETZ THEOREM ON HYPERPLANE SECTIONS [J].
ANDREOTTI, A ;
FRANKEL, T .
ANNALS OF MATHEMATICS, 1959, 69 (03) :713-717
[2]  
[Anonymous], 1993, INTRO TORIC VARIETIE
[3]  
[Anonymous], 1995, University Lecture Series
[4]  
Barth W., 1984, COMPACT COMPLEX SURF
[5]  
Borel A., 1960, MICH MATH J, V7, P137, DOI 10.1307/mmj/1028998385
[6]  
BOUT M, 2006, J SYMB COMPUT, V41, P234
[7]  
Bredon G., 1997, GRAD TEXTS MATH, V170
[8]  
CHOR B, 2003, 7 ANN C RES COMP MOL, P76
[9]  
Cox D. A., 1995, J. Algebraic Geom., V4, P17
[10]  
DAMON J, 1999, LONDON MATH SOC LECT, V263, P25