Point-sampled cell complexes

被引:32
作者
Adamson, Anders [1 ]
Alexa, Marc
机构
[1] Tech Univ Darmstadt, Darmstadt, Germany
[2] TU Berlin, Berlin, Germany
来源
ACM TRANSACTIONS ON GRAPHICS | 2006年 / 25卷 / 03期
关键词
point-based modeling; cell complex; sharp edges and corners; continuity constraints;
D O I
10.1145/1141911.1141940
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A piecewise smooth surface, possibly with boundaries, sharp edges, corners, or other features is defined by a set of samples. The basic idea is to model surface patches, curve segments and points explicitly, and then to glue them together based on explicit connectivity information. The geometry is defined as the set of stationary points of a projection operator, which is generalized to allow modeling curves with samples, and extended to account for the connectivity information. Additional tangent constraints can be used to model shapes with continuous tangents across edges and corners.
引用
收藏
页码:671 / 680
页数:10
相关论文
共 47 条
  • [1] Adams B, 2005, J AM ETHNIC HIST, V24, P3
  • [2] Approximating bounded, non-orientable surfaces from points
    Adamson, A
    Alexa, M
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, 2004, : 243 - +
  • [3] Point set surfaces
    Alexa, M
    Behr, J
    Cohen-Or, D
    Fleishman, S
    Levin, D
    Silva, CT
    [J]. VISUALIZATION 2001, PROCEEDINGS, 2001, : 21 - 28
  • [4] Alexa M., 2004, P EUR S POINT BAS GR, p149?155
  • [5] ALEXA M, 2006, UNPUB HERMITE POINT
  • [6] Defining point-set surfaces
    Amenta, N
    Kil, YJ
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03): : 264 - 270
  • [7] Amenta N., 1998, Computer Graphics. Proceedings. SIGGRAPH 98 Conference Proceedings, P415, DOI 10.1145/280814.280947
  • [8] Sharp features on multiresolution subdivision surfaces
    Biermann, H
    Martin, IM
    Zorin, D
    Bernardini, F
    [J]. GRAPHICAL MODELS, 2002, 64 (02) : 61 - 77
  • [9] Biermann H, 2002, ACM T GRAPHIC, V21, P312, DOI 10.1145/566570.566583
  • [10] Biermann H, 2001, COMP GRAPH, P185, DOI 10.1145/383259.383280