Crucial steps in the structure determination of the Na+/H+ antiporter NhaA in its native conformation

被引:36
作者
Screpanti, Emanuela
Padan, Etana
Rimon, Abraham
Michel, Hartmut
Hunte, Carola
机构
[1] Max Planck Inst Biophys, Dept Mol Membrane Biol, D-60438 Frankfurt, Germany
[2] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
NhaA; Na+/H+ exchanger; membrane protein crystallization; X-ray structure cryo-EM comparison; helix packing;
D O I
10.1016/j.jmb.2006.07.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sodium proton antiporters are ubiquitous membrane proteins. Their importance for cell viability is the result of their role in homeostasis of intracellular pH, cellular Na+ content and cell volume. Recently, the first structure of this family of secondary transporters, namely of NhaA from Escherichia coli, revealed a novel fold and elucidated the molecular basis for the mechanism of transport and its regulation by pH. Here, we describe the key steps for the structure determination of NhaA, an iterative process of improving protein quality as well as crystallization conditions. Protein quality was optimized by shortening the purification to a single step and by changing the expression host. The major steps for crystal improvement were the exchange of the detergent during protein purification from the beta- to the a-anomer of DDM, the addition of OG to the crystallization set ups, and the growth of the crystals under conditions suitable for cryo-temperatures. Unexpectedly, the dimeric association of the transporter in the 3D crystal lattice is non-physiological. A comparison of the X-ray structure with the electron density map from cryo-electron microscopy of 2D crystals demonstrates that the NhaA helix packing in the 3D crystal is identical with the one in the lipid environment. Thus, the antiporter is in a native conformation in the 3D crystals. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 49 条
[1]   Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J].
Apse, MP ;
Sottosanto, JB ;
Blumwald, E .
PLANT JOURNAL, 2003, 36 (02) :229-239
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Evolutionary origins of eukaryotic sodium/proton exchangers [J].
Brett, CL ;
Donowitz, M ;
Rao, R .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (02) :C223-C239
[5]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[6]   Phylogeny as a guide to structure and function of membrane transport proteins (Review) [J].
Chang, AB ;
Lin, R ;
Studley, WK ;
Tran, CV ;
Saier, MH .
MOLECULAR MEMBRANE BIOLOGY, 2004, 21 (03) :171-181
[7]   RETRACTED: Structure of MsbA from E-coli:: A homolog of the multidrug resistance ATP binding cassette (ABC) transporters (Retracted Article. See vol 314, pg 1875, 2006) [J].
Chang, G ;
Roth, CB .
SCIENCE, 2001, 293 (5536) :1793-1800
[8]   The expanding family of eucaryotic Na+/H+ exchangers [J].
Counillon, L ;
Pouysségur, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :1-4
[9]   Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods [J].
delaFortelle, E ;
Bricogne, G .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :472-494
[10]   Inhibition of Na+-H+ exchange prevents hypertrophy, fibrosis, and heart failure in β1-adrenergic receptor transgenic mice [J].
Engelhardt, S ;
Hein, L ;
Keller, U ;
Klämbt, K ;
Lohse, MJ .
CIRCULATION RESEARCH, 2002, 90 (07) :814-819