Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution

被引:149
作者
Yang, XZ
Florin, L
Farzan, M
Kolchinsky, P
Kwong, PD
Sodroski, J
Wyatt, R
机构
[1] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Immunol & Infect Dis, Boston, MA 02115 USA
[5] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
D O I
10.1128/JVI.74.10.4746-4754.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.
引用
收藏
页码:4746 / 4754
页数:9
相关论文
共 61 条
[1]  
ALAN JS, 1985, SCIENCE, V228, P1091
[2]   CC CKRS: A RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1 [J].
Alkhatib, G ;
Combadiere, C ;
Broder, CC ;
Feng, Y ;
Kennedy, PE ;
Murphy, PM ;
Berger, EA .
SCIENCE, 1996, 272 (5270) :1955-1958
[3]   Genetic and immunologic characterization of viruses infecting MN-rgp120-vaccinated volunteers [J].
Berman, PW ;
Gray, AM ;
Wrin, T ;
Vennari, JC ;
Eastman, DJ ;
Nakamura, GR ;
Francis, DP ;
Gorse, G ;
Schwartz, DH .
JOURNAL OF INFECTIOUS DISEASES, 1997, 176 (02) :384-397
[4]   ANTIGENIC IMPLICATIONS OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 ENVELOPE QUATERNARY STRUCTURE - OLIGOMER-SPECIFIC AND OLIGOMER-SENSITIVE MONOCLONAL-ANTIBODIES [J].
BRODER, CC ;
EARL, PL ;
LONG, D ;
ABEDON, ST ;
MOSS, B ;
DOMS, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11699-11703
[5]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[6]   Why do we not have an HIV vaccine and how can we make one? [J].
Burton, DR ;
Moore, JP .
NATURE MEDICINE, 1998, 4 (05) :495-498
[7]  
Burton DR, 1997, AIDS, V11, pS87
[8]   EFFECTS OF AMINO-ACID CHANGES IN THE EXTRACELLULAR DOMAIN OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 GP41 ENVELOPE GLYCOPROTEIN [J].
CAO, J ;
BERGERON, L ;
HELSETH, E ;
THALI, M ;
REPKE, H ;
SODROSKI, J .
JOURNAL OF VIROLOGY, 1993, 67 (05) :2747-2755
[9]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[10]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273