Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box

被引:242
作者
Ciompi, Francesco [1 ]
de Hoop, Bartjan [2 ]
van Riel, Sarah J. [1 ]
Chung, Kaman [1 ]
Scholten, Ernst Th. [1 ]
Oudkerk, Matthijs [3 ]
de Jong, Pim A. [2 ]
Prokop, Mathias [4 ]
van Ginneken, Bram [1 ,5 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Diagnost Image Anal Grp, NL-6525 ED Nijmegen, Netherlands
[2] Univ Med Ctr, Utrecht, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Groningen, Netherlands
[4] Radboud Univ Nijmegen, Med Ctr, Dept Radiol, NL-6525 ED Nijmegen, Netherlands
[5] Fraunhofer Mevis, Bremen, Germany
关键词
Chest CT; Peri-fissural nodules; Lung cancer screening; Convolutional neural networks; OverFeat; Deep learning; LUNG-CANCER; PERIFISSURAL NODULES; CT;
D O I
10.1016/j.media.2015.08.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we tackle the problem of automatic classification of pulmonary peri-fissural nodules (PFNs). The classification problem is formulated as a machine learning approach, where detected nodule candidates are classified as PFNs or non-PFNs. Supervised learning is used, where a classifier is trained to label the detected nodule. The classification of the nodule in 3D is formulated as an ensemble of classifiers trained to recognize PFNs based on 2D views of the nodule. In order to describe nodule morphology in 2D views, we use the output of a pre-trained convolutional neural network known as OverFeat. We compare our approach with a recently presented descriptor of pulmonary nodule morphology, namely Bag of Frequencies, and illustrate the advantages offered by the two strategies, achieving performance of AUC = 0.868, which is close to the one of human experts. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 30 条
  • [1] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [2] Perifissural Nodules Seen at CT Screening for Lung Cancer
    Ahn, Myeong I.
    Gleeson, Tadhg G.
    Chan, Ida H.
    McWilliams, Annette M.
    MacDonald, Sharyn L.
    Lam, Stephen
    Atkar-Khattra, Sukhinder
    Mayo, John R.
    [J]. RADIOLOGY, 2010, 254 (03) : 949 - 956
  • [3] [Anonymous], 2014, LUNG CT SCREEN REP D
  • [4] [Anonymous], 2014, Cancer Facts and Figures 2014
  • [5] [Anonymous], 2015, Proceedings-International Symposium on Biomedical Imaging, 2015-July
  • [6] [Anonymous], 2015, SPIE MED IMAGING
  • [7] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [8] Bar Y, 2015, I S BIOMED IMAGING, P294, DOI 10.1109/ISBI.2015.7163871
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482