Interactive multi-participant tour allocation

被引:14
作者
Funes, P [1 ]
Bonabeau, E [1 ]
Hervé, J [1 ]
Morieux, Y [1 ]
机构
[1] Icosyst Corp, Cambridge, MA 02138 USA
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1331100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use the example of the allocation of tours to mailmen to illustrate the general idea that Interactive Evolutionary Computation (IEC) can be applied to a range of task allocation problems where the task performers are humans. In this application of IEC, each participant is presented only with the portion of solution corresponding to his/her task (tour). In addition to the subjective evaluation of solutions by the participants, the solutions presented to the participants are pre-optimized according to objective criteria.
引用
收藏
页码:1699 / 1705
页数:7
相关论文
共 15 条
[1]  
ANDERSON D, 1999, ACM WORKSH NEW PAR I, P21
[2]  
BANZHAF W, 1997, HDB EVOLUTIONARY COM, P1
[3]   Agent-based modeling: Methods and techniques for simulating human systems [J].
Bonabeau, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :7280-7287
[4]   INTERACTIVE OPTIMIZATION IMPROVES SERVICE AND PERFORMANCE FOR YELLOW FREIGHT SYSTEM [J].
BRAKLOW, JW ;
GRAHAM, WW ;
HASSLER, SM ;
PECK, KE ;
POWELL, WB .
INTERFACES, 1992, 22 (01) :147-172
[5]  
DAWKINS R, 1987, BLIN WATCHMAKER
[6]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16
[7]  
INOUE T, 1999, P IEEE INT C SYST MA, V5, P553
[8]  
KLAU GW, 2002, NAT C ART INT, P41
[9]  
LESH N, 2003, 3 INT NASA WORKSH PL
[10]  
Michalewicz Z., GENETIC ALGORITHMS D, P289