Three-dimensional Lie group actions on compact (4n+3)-dimensional geometric manifolds

被引:3
作者
Kamishima, Y
Udono, T
机构
[1] Tokyo Metropolitan Univ, Dept Math, Hachioji, Tokyo 1920397, Japan
[2] Kumamoto Univ, Dept Math, Kumamoto 8608555, Japan
关键词
quaternionic kahler structure; contact structure; CR-structure; sasakian; 3-structure; heisenberg CR-structure; quaternionic hyperbolic space; noncompact group action; flatness;
D O I
10.1016/j.difgeo.2003.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (4n + 3)-dimensional sphere S4n+3 can be viewed as the boundary of the quaternionic hyperbolic space H-H(n+1) and the group PSp(n + 1, 1) of quaternionic hyperbolic isometries extends to a real analytic transitive action on S4n+3. We call the pair (PSp(n + 1, 1),S4n+3) a spherical Q C-C geometry. A manifold M locally modelled on this geometry is said to be a spherical Q C-C manifold. We shall classify all pairs (G, M) where G is a three-dimensional connected Lie group which acts smoothly and almost freely on a compact spherical Q C-C manifold M, preserving the geometric structure. As an application, we shall determine all compact 3-pseudo-Sasakian manifolds admitting spherical Q C-C structures. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 33 条
[1]  
ALEKSEEVSKII D. V., 1968, FUNCT ANAL APPL, V2, P97, DOI 10.1007/BF01075943
[2]  
ALEKSEEVSKY DA, UNIFORMIZATION 4N PL
[3]  
BLAIR D. E., 2002, PROGR MATH, V203
[4]  
BOYER CP, 1994, J REINE ANGEW MATH, V455, P183
[5]  
Bredon G E, 1972, Introduction to compact transformation groups, V46
[6]  
Chen SS., 1974, HYPERBOLIC SPACES CO, P49
[7]   CHARACTERISTIC FORMS AND GEOMETRIC INVARIANTS [J].
CHERN, SS ;
SIMONS, J .
ANNALS OF MATHEMATICS, 1974, 99 (01) :48-69
[8]  
Dragomir S, 1998, Progress in Mathematics, V155
[9]  
Goldman W.M., 1999, OXFORD MATH MONOGRAP
[10]  
Ishihara S., 1973, Kodai Math. Sem. Rep, V25, P321, DOI [10.2996/kmj/1138846820, DOI 10.2996/KMJ/1138846820]