Skeletal muscle insulin resistance in obesity-associated type 2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-ζ/λ/ι

被引:48
作者
Standaert, ML
Ortmeyer, HK
Sajan, MP
Kanoh, Y
Bandyopadhyay, G
Hansen, BC
Farese, RV
机构
[1] Univ S Florida, Coll Med, Res Serv, James A Haley Vet Adm Med Ctr, Tampa, FL USA
[2] Univ S Florida, Coll Med, Dept Internal Med, Tampa, FL USA
[3] Univ Maryland, Sch Med, Dept Physiol, Baltimore, MD 21201 USA
关键词
D O I
10.2337/diabetes.51.10.2936
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rhesus monkeys frequently develop obesity and insulin resistance followed by type 2 diabetes when allowed free access to chow. This insulin resistance is partly due to defective glucose transport into skeletal muscle. In this study, we examined signaling factors required for insulin-stimulated glucose transport in muscle biopsies taken during euglycemic-hyperinsulinemic clamps in nondiabetic, obese prediabetic, and diabetic monkeys. Insulin increased activities of insulin receptor substrate (IRS)-1-dependent phosphatidylinositol (PI) 3-kinase and its downstream effectors, atypical protein kinase Cs (aPKCs) (zeta/lambda/iota) and protein kinase B (PKB) in muscles of nondiabetic monkeys. Insulin-induced increases in glucose disposal and aPKC activity diminished progressively in prediabetic and diabetic monkeys. Decreases in aPKC activation appeared to be at least partly due to diminished activation of IRS-1-dependent PI 3-kinase, but direct activation of aPKCs by the PI 3-kinase lipid product PI-3,4,5-(PO4)(3) was also diminished. In conjunction with aPKCs, PKB activation was diminished in prediabetic muscle but, differently from aPKCs, seemed to partially improve in diabetic muscle. interestingly, calorie restriction and avoidance of obesity largely prevented development of defects in glucose disposal and aPKC activation. Our findings suggest that defective activation of aPKCs contributes importantly to obesity-dependent development of skeletal muscle insulin resistance in prediabetic and type 2 diabetic monkeys.
引用
收藏
页码:2936 / 2943
页数:8
相关论文
共 31 条
[1]   Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-λ on insulin-stimulated glucose transport in L6 myotubes [J].
Bandyopadhyay, G ;
Kanoh, Y ;
Sajan, MP ;
Standaert, ML ;
Farese, RV .
ENDOCRINOLOGY, 2000, 141 (11) :4120-4127
[2]  
Bandyopadhyay G, 1997, J BIOL CHEM, V272, P2551
[3]   Effects of transiently expressed atypical (ζ, λ), conventional (α, β) and novel (δ, ε) protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes:: specific interchangeable effects of protein kinases C-ζ and C-λ [J].
Bandyopadhyay, G ;
Standaert, ML ;
Kikkawa, U ;
Ono, Y ;
Moscat, J ;
Farese, RV .
BIOCHEMICAL JOURNAL, 1999, 337 :461-470
[4]   PKC-ζ mediates insulin effects on glucose transport in cultured preadipocyte-derived human Adipocytes [J].
Bandyopadhyay, G ;
Sajan, MP ;
Kanoh, Y ;
Standaert, ML ;
Quon, MJ ;
Lea-Currie, R ;
Sen, A ;
Farese, RV .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2002, 87 (02) :716-723
[5]   Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes [J].
Bandyopadhyay, G ;
Standaert, ML ;
Galloway, L ;
Moscat, J ;
Farese, RV .
ENDOCRINOLOGY, 1997, 138 (11) :4721-4731
[6]   Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation [J].
Bjornholm, M ;
Kawano, Y ;
Lehtihet, M ;
Zierath, JR .
DIABETES, 1997, 46 (03) :524-527
[7]   LONG-TERM DIETARY RESTRICTION IN OLDER-AGED RHESUS-MONKEYS - EFFECTS ON INSULIN-RESISTANCE [J].
BODKIN, NL ;
ORTMEYER, HK ;
HANSEN, BC .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 1995, 50 (03) :B142-B147
[8]   HEPATIC GLUCOSE-PRODUCTION AND INSULIN SENSITIVITY PRECEDING DIABETES IN MONKEYS [J].
BODKIN, NL ;
METZGER, BL ;
HANSEN, BC .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (05) :E676-E681
[9]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[10]   THE TRIUMVIRATE - BETA-CELL, MUSCLE, LIVER - A COLLUSION RESPONSIBLE FOR NIDDM [J].
DEFRONZO, RA .
DIABETES, 1988, 37 (06) :667-687