The information geometry of the one-dimensional Potts model

被引:33
作者
Dolan, BP [1 ]
Johnston, DA
Kenna, R
机构
[1] Natl Univ Ireland, Dept Mat Phys, Maynooth, Kildare, Ireland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Coventry Univ, Sch Math & Informat Sci, Coventry CV1 5FB, W Midlands, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 43期
关键词
D O I
10.1088/0305-4470/35/43/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In various statistical-mechanical models the introduction of a metric into the space of parameters (e.g. the temperature variable, P, and the external field variable, h, in the case of spin models) gives an alternative perspective on the phase structure. For the one-dimensional Ising model the scalar curvature, R, of this metric can be calculated explicitly in the thermodynamic limit and is found to be R = 1 + cosh(h)/rootsinh(2)(h) + exp(-4beta). This is positive definite and, for physical fields and temperatures, diverges only at the zero-temperature, zero-field 'critical point' of the model. In this paper we calculate R for the one-dimensional q-state Potts model finding an expression of the form R = A(q, beta, h) + B(q, beta, h)/rooteta(q, beta, h), where q(q, P, h) is the Potts analogue of sinh(2)(h) + exp(-4beta). This is no longer positive definite, but once again it diverges only at the critical point in the space of real parameters. We remark, however, that a naive analytic continuation to complex field reveals a further divergence in the Ising and Potts curvatures at the Lee-Yang edge.
引用
收藏
页码:9025 / 9035
页数:11
相关论文
共 33 条
[1]   LOGARITHMIC SINGULARITY OF SPECIFIC HEAT NEAR TRANSITION POINT IN ISING MODEL [J].
ABE, R .
PROGRESS OF THEORETICAL PHYSICS, 1967, 37 (06) :1070-&
[2]   NOTE ON CRITICAL BEHAVIOR OF ISING FERROMAGNETS [J].
ABE, R .
PROGRESS OF THEORETICAL PHYSICS, 1967, 38 (01) :72-&
[3]   CRITICAL BEHAVIOR OF PAIR CORRELATION FUNCTION IN ISING FERROMAGNETS [J].
ABE, R .
PROGRESS OF THEORETICAL PHYSICS, 1967, 38 (03) :568-&
[4]  
[Anonymous], 1922, Philosophical Transactions of the Royal Society of London A, DOI [10.1098/rsta.1922.0009, DOI 10.1098/RSTA.1922.0009]
[5]   SOME RIGOROUS INEQUALITIES SATISFIED BY FERROMAGNETIC ISING MODEL IN A MAGNETIC FIELD [J].
BAKER, GA .
PHYSICAL REVIEW LETTERS, 1968, 20 (18) :990-&
[6]   THE ISING-MODEL ON A RANDOM PLANAR LATTICE - THE STRUCTURE OF THE PHASE-TRANSITION AND THE EXACT CRITICAL EXPONENTS [J].
BOULATOV, DV ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1987, 186 (3-4) :379-384
[7]   GEOMETRICAL ASPECTS OF STATISTICAL-MECHANICS [J].
BRODY, D ;
RIVIER, N .
PHYSICAL REVIEW E, 1995, 51 (02) :1006-1011
[8]   On the symmetry of real-space renormalisation [J].
Brody, DC ;
Ritz, A .
NUCLEAR PHYSICS B, 1998, 522 (03) :588-604
[9]   Geometrization of statistical mechanics [J].
Brody, DC ;
Hughston, LP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1985) :1683-1715
[10]   APPLICATIONS OF THE KAKUTANI METRIC TO REAL-SPACE RENORMALIZATION [J].
BRODY, EJ .
PHYSICAL REVIEW LETTERS, 1987, 58 (03) :179-182