Microwave-Photonic Sensor for Remote Water-Level Monitoring Based on Chaotic Laser

被引:29
作者
Ji, Yongning [1 ,2 ]
Zhang, Mingjiang [1 ,2 ,3 ]
Wang, Yuncai [1 ,2 ]
Wang, Peng [1 ,2 ]
Wang, Anbang [1 ,3 ]
Wu, Yuan [2 ,3 ]
Xu, Hang [1 ,4 ]
Zhang, Yongning [2 ,4 ]
机构
[1] Taiyuan Univ Technol, Minist Educ, Key Lab Adv Transducers & Intelligent Control Sys, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Phys & Optoelect, Inst Optoelect Engn, Taiyuan 030024, Peoples R China
[3] Shenzhen Univ, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
[4] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 03期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Chaos; microwave-photonic; laser; remote water-level sensor; NETWORKS;
D O I
10.1142/S0218127414500321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A microwave-photonic sensor for remote water-level monitoring based on chaotic laser is proposed and demonstrated. The probe chaotic signal with bandwidth of 18 GHz is generated in the central office and then transmitted at the remote antenna unit after a 24 km single-mode fiber transmission. And the monitoring data from the remote antenna unit is sent back to the central office over fiber. The water-level measuring is accomplished by cross-correlation between reference signal and probe signal at the central office. So the remote water-level monitoring system with a high spatial resolution of 2 cm is achieved and the height of water surface can be displayed in real time.
引用
收藏
页数:7
相关论文
共 16 条
[1]   Wireless sensor networks: a survey [J].
Akyildiz, IF ;
Su, W ;
Sankarasubramaniam, Y ;
Cayirci, E .
COMPUTER NETWORKS, 2002, 38 (04) :393-422
[2]  
[Anonymous], OCEANS 2008
[3]   Fiber-Optic Liquid Level Sensor [J].
Antonio-Lopez, Jose E. ;
May-Arrioja, Daniel A. ;
LiKamWa, Patrick .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (23) :1826-1828
[4]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[5]   Chaos-based spreading in DS-UWB sensor networks increases available bit rate [J].
Cimatti, Giampaolo ;
Rovatti, Riccardo ;
Setti, Gianluca .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) :1327-1339
[6]   Flood monitoring and mapping using passive microwave remote sensing in Namibia [J].
De Groeve, Tom .
GEOMATICS NATURAL HAZARDS & RISK, 2010, 1 (01) :19-35
[7]  
Dinh T. L., 2007, LCN, V2007, P799
[8]   Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies [J].
Glasgow, HB ;
Burkholder, JM ;
Reed, RE ;
Lewitus, AJ ;
Kleinman, JE .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2004, 300 (1-2) :409-448
[9]   Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam [J].
Guo, T ;
Zhao, QD ;
Dou, QY ;
Zhang, H ;
Xue, LF ;
Huang, GL ;
Dong, XY .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (11) :2400-2402
[10]   Tracking water level changes of the Amazon Basin with space-borne remote sensing and integration with large scale hydrodynamic modelling: A review [J].
Hall, Amanda C. ;
Schumann, Guy J. -P. ;
Bamber, Jonathan L. ;
Bates, Paul D. .
PHYSICS AND CHEMISTRY OF THE EARTH, 2011, 36 (7-8) :223-231