Gravitational equilibrium in the presence of a positive cosmological constant

被引:32
作者
Nowakowski, M [1 ]
Sanabria, JC [1 ]
Garcia, A [1 ]
机构
[1] Univ Los Andes, Dept Fis, Bogota, DC, Colombia
关键词
D O I
10.1103/PhysRevD.66.023003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reconsider the virial theorem in the presence of a positive cosmological constant Lambda. Assuming steady state, we derive an inequality of the form rhogreater than or equal toA(Lambda/8piG(N)) for the mean density rho of the astrophysical object. The parameter A depends only on the shape of the object. With a minimum at A(sphere)=2, its value can increase by several orders of magnitude as the shape of the object deviates from a spherically symmetric one. This indicates that flattened matter distributions such as, e.g., clusters or superclusters, with low density, cannot be in gravitational equilibrium.
引用
收藏
页数:4
相关论文
共 20 条
[1]  
ALDROVANDI R, GRQC981100
[2]   Some dynamical effects of the cosmological constant [J].
Axenides, M ;
Floratos, EG ;
Perivolaropoulos, L .
MODERN PHYSICS LETTERS A, 2000, 15 (25) :1541-1550
[3]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[4]   NEWTONIAN NO-HAIR THEOREMS [J].
BARROW, JD ;
GOTZ, G .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (09) :1253-1265
[5]  
BERGSTROM L, ASTROPH0002152
[6]  
Binney J., 2008, Galactic Dynamics
[7]  
DOLGOV AD, 1982, P NULLF WORKSH CAMBR
[8]   MODEL OF A DECAYING COSMOLOGICAL CONSTANT [J].
FUJII, Y ;
NISHIOKA, T .
PHYSICAL REVIEW D, 1990, 42 (02) :361-370
[9]  
Fujii Y., 2000, Gravitation & Cosmology, V6, P107
[10]   The end of the age problem, and the case for a cosmological constant revisited [J].
Krauss, LM .
ASTROPHYSICAL JOURNAL, 1998, 501 (02) :461-466