Mercer kernel-based clustering in feature space

被引:600
作者
Girolami, M [1 ]
机构
[1] Aalto Univ, Lab Comp & Informat Sci, FIN-02015 Helsinki, Finland
[2] Univ Paisley, Dept Comp & Informat Syst, Appl Computat Intelligence Res Unit, Paisley PA1 2BE, Renfrew, Scotland
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2002年 / 13卷 / 03期
关键词
data clustering; data partitioning; unsupervised learning;
D O I
10.1109/TNN.2002.1000150
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter presents a method for both the unsupervised partitioning of a sample of data and the estimation of the possible number of inherent clusters which generate the data. This work exploits the notion that performing a nonlinear data transformation into some high dimensional feature space increases the probability of the linear separability of the patterns within the transformed space and therefore simplifies the associated data structure, It is shown that the eigenvectors of a kernel matrix which defines the implicit mapping provides a means to estimate the number of clusters inherent within the data and a computationally simple iterative procedure is presented for the subsequent feature space partitioning of the data.
引用
收藏
页码:780 / 784
页数:5
相关论文
共 11 条
  • [1] [Anonymous], 1990, British Machine Vision Conference
  • [2] BUHMANN JM, 1998, LEARNING GRAPHICAL M
  • [3] PROJECTION PURSUIT ALGORITHM FOR EXPLORATORY DATA-ANALYSIS
    FRIEDMAN, JH
    TUKEY, JW
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (09) : 881 - 890
  • [4] ALGORITHM FOR EUCLIDEAN SUM OF SQUARES CLASSIFICATION
    GORDON, AD
    HENDERSON, JT
    [J]. BIOMETRICS, 1977, 33 (02) : 355 - 362
  • [5] Jain K, 1988, Algorithms for clustering data
  • [6] ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation
    Lee, TW
    Lewicki, MS
    Sejnowski, TJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (10) : 1078 - 1089
  • [7] ROBERTS SJ, 2000, PATTERN RECOGNITION, V33
  • [8] An expectation-maximization approach to nonlinear component analysis
    Rosipal, R
    Girolami, M
    [J]. NEURAL COMPUTATION, 2001, 13 (03) : 505 - 510
  • [9] Roth V, 2000, ADV NEUR IN, V12, P568
  • [10] Nonlinear component analysis as a kernel eigenvalue problem
    Scholkopf, B
    Smola, A
    Muller, KR
    [J]. NEURAL COMPUTATION, 1998, 10 (05) : 1299 - 1319