Cumulative residual entropy: A new measure of information

被引:422
作者
Rao, M [1 ]
Chen, YM
Vemuri, BC
Wang, F
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
Distribution; Entropy; Information measurement;
D O I
10.1109/TIT.2004.828057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we use the cumulative distribution of a random variable to define its information content and thereby develop an alternative measure of uncertainty that extends Shannon entropy to random variables with continuous distributions. We call this measure cumulative residual entropy (CRE). The salient features of CRE are as follows: 1) it is more general than the Shannon entropy in that its definition is valid in the continuous and discrete domains, 2) it possesses more general mathematical properties than the Shannon entropy, and 3) it can be easily computed from sample data and these computations aymptotically converge to the true values. The properties of CRE and a precise formula relating CRE and Shannon entropy are given in the paper. Finally, we present some applications of CRE to reliability engineering and computer vision.
引用
收藏
页码:1220 / 1228
页数:9
相关论文
共 20 条
[1]  
Bertsekas D. P., 2016, NONLINEAR PROGRAMMIN
[2]  
Chefd'Hotel C, 2001, IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, P21, DOI 10.1109/VLSM.2001.938877
[3]  
Chung KL., 1974, COURSE PROBABILITY T
[4]  
COLLIGNON A, 1995, COMP IMAG VIS, V3, P263
[5]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[6]  
JUMARIE G, 1990, RELATIVE INFORMATION, P55
[7]  
KECECIOGLU D, 1991, RLIABILITY ENG HDB, V1
[8]  
Kleinrock L., 1975, QUEUEING SYSTEMS VOL
[9]  
KULLBACK S, 1959, INFORMATION THEORY S
[10]  
POLLARD D, 2000, CONVERGENCE STOCHAST, P46