Fast and accurate image registration using Tsallis entropy and simultaneous perturbation stochastic approximation

被引:25
作者
Martin, S [1 ]
Morison, G [1 ]
Nailon, W [1 ]
Durrani, T [1 ]
机构
[1] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
关键词
D O I
10.1049/el:20040375
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Tsallis measure of mutual information is combined with the simultaneous perturbation stochastic approximation algorithm to register images. It is shown that Tsallis entropy can improve registration accuracy and speed of convergence, compared with Shannon entropy, in the calculation of mutual information. Simulation results show that the new algorithm achieves up to seven times faster convergence and four times more precise registration than using a classic form of entropy.
引用
收藏
页码:595 / 597
页数:3
相关论文
共 5 条
[1]   Information gain within nonextensive thermostatistics [J].
Borland, L ;
Plastino, AR ;
Tsallis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6490-6501
[2]  
COLERHODES A, 2003, IEEE INT C AC SPEECH
[3]  
MORISON G, 2003, IEEE INT C AC SPEECH, V5, pV285
[4]   Mutual-information-based registration of medical images: A survey [J].
Pluim, JPW ;
Maintz, JBA ;
Viergever, MA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (08) :986-1004
[5]   MULTIVARIATE STOCHASTIC-APPROXIMATION USING A SIMULTANEOUS PERTURBATION GRADIENT APPROXIMATION [J].
SPALL, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (03) :332-341